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Abstract— Estimation of circular quantities is a widespread
problem that occurs in many tracking and control applications.
Commonly used approaches such as the Kalman filter, the
extended Kalman filter (EKF), and the unscented Kalman filter
(UKF) do not take periodicity explicitly into account, which
can result in low estimation accuracy. We present a filtering
algorithm for angular quantities in nonlinear systems that is
based on circular statistics. The new filter switches between
three different representations of probability distributions on
the circle, the wrapped normal, the von Mises, and a Dirac
mixture density. It can be seen as a systematic generalization
of the UKF to circular statistics. We evaluate the proposed
filter in simulations and show its superiority to conventional
approaches.

I. INTRODUCTION

Estimation of directional quantities is a widespread problem
in many tracking and control applications. For example,
applications involving moving objects such as cars, ships,
planes, spacecraft, or humans usually require estimation of
the direction the considered object is facing. Other uses of
directional filtering include control of robotic rotary joints
and calculation of the relative orientation of several sensors
in the process of calibration. Depending on the application,
only a single angle in 2D or a complete 3D orientation might
be considered.

Currently, it is common to use traditional filters such as
the Kalman filter [1] and its nonlinear versions such as the
extended Kalman filter (EKF) and the unscented Kalman
filter (UKF) [2] for directional filtering (for example [3], [4],
[5]). However, these filters are unable to handle directional
information explicitly, since they assume that both state and
measurements can be represented in Rn. This leads to issues
with the inherent periodicity of directional values. Typical
problems include strong dependence on the quality of the ini-
tial estimate and failure of the tracking when the discontinuity
between 0 and 2π (or at ±π, depending on parameterization)
is reached. In order to better describe directional information,
the use of projected Gaussian distributions has been suggested
[6].

Directional statistics [7] allows a correct description of
probability distributions on the circle and other manifolds
such as spheres or tori. In the past, directional statistics has
mostly been used for geographical and biological applications.
Considering circular distributions is also of interest for
tracking applications [8].
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Fig. 1. Wrapped normal distribution with parameters µ = 1, σ = 1 and
its wrapped Dirac mixture approximation with three components.

Azmani et. al have recently proposed a circular filter based
on the von Mises distribution [9]. This filter allows the
estimation of a single angle for a system whose system and
measurement function are the identity disturbed by additive
noise. We present a similar approach based on the wrapped
normal and von Mises distributions. The measurement model
is required to be the identity with additive noise, but unlike the
filter proposed in [9], our filter can be used with a nonlinear
system model.

In the next section, we introduce some important probability
distributions on the circle and discuss their properties. In
Sec. III our circular filter is derived. A simulated example is
given in Sec. IV, where a magnetometer is used for correction
of noisy gyroscope measurements. In this simulation, we
compare the proposed filter with the classical UKF and a
slightly modified UKF adapted to a circular setting. Our work
is concluded in Sec. V.

II. PROBABILITY DISTRIBUTIONS ON A CIRCLE

Probability distributions on the circle can be understood as
the subset of all probability distributions on R with support
[0, 2π). An example of such a probability distribution is
depicted in Fig. 1. Classical concepts, such as the expected
value, statistical dispersion, and limit theorems have to be
adapted to the circular situation.

The first circular moment (sometimes referred to as
trigonometric moment) is the circular equivalent to the
expected value. For a random variable X taking values in
[0, 2π), the n-th circular moment is defined as the complex



number

E(einX) =

∫ 2π

0

einxf(x)dx ∈ C .

As a complex number is composed of two real values, the first
circular moment is an analogue to the fist two conventional
moments of X . The argument arg(E(einX)) ∈ [0, 2π) can be
seen as the circular mean, wheres the magnitude |E(einX)| ∈
[0, 1] is a measure of concentration.

For the development of an angular filter, we introduce
two popular continuous distributions on the circle, the
wrapped normal distribution and the von Mises distribution.
A comprehensive discussion of these distributions can be
found in [7] and [10].

We also make use of a Dirac mixture distribution on the
circle. A wrapped Dirac mixture with L components and
Dirac positions β1, . . . , βL ∈ [0, 2π) is defined as

f(x) =

L∑
j=1

ωj · δ(x− βj) ,

where ωj are weighting coefficients and
∑L
j=1 ωj = 1. Its

n-th circular moment is given by E(einX) =
∑L
j=1 ωje

inβj .

A. Wrapped Normal Distribution
The wrapped normal (WN) distribution is the circular

version of the normal distribution on the real line. It arises
by cutting the normal distribution into intervals of length 2π
and additively concentrating it on the interval [0, 2π). The
probability density function (pdf) of a WN distribution is
given by

f(θ) =
1

σ
√
2π

∞∑
k=−∞

exp

(
−(θ − µ+ 2πk)2

2σ2

)
,

where θ ∈ [0, 2π) with parameters µ ∈ [0, 2π) and σ ∈ R+.
An example of a WN distribution is depicted in Figure 1.

This distribution is of particular interest, because it is the
limit distribution in a circular central limit theorem (which
can also be generalized to other manifolds [11]). Consider
i.i.d. random variables θi with E(θi) = 0 and E(θ2i ) = σ̂2.
If σ̂2 <∞, then the summation scheme

Sn =
1√
n

n∑
k=1

θk

converges to a normally distributed random variable for
n→∞ and Sn mod 2π converges to a wrapped normal
distributed random variable. Thus, many phenomena arising
in nature can be approximated by a WN distribution.

The WN distribution is closed under convolution (i. e.,
the sum of WN distributed random variables is itself a WN
distributed random variable). In contrast to the unwrapped
case, the product of two WN densities is not a rescaled WN
density. Thus, it is not possible to adapt the classical Kalman
filter to the circular case in a straightforward manner.

The n-th circular moment of the WN distribution is given
by E(einX) = einµ−n

2σ2/2. Since the first circular moment
is a composed of two real values, it is sufficient to completely
characterize a WN distribution.
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Fig. 2. WN distribution with µ = 1, σ = 1 and its VM and Dirac
approximations.

B. Von Mises Distribution

The von Mises (VM) distribution is often used as an
approximate replacement of a WN distribution. It has a similar
shape, while being easier to handle, since its pdf does not
involve an infinite sum. The pdf is given by

g(θ) =
1

2πI0(κ)
eκ cos(θ−µ) ,

where θ ∈ [0, 2π) and I0(x) denotes the Bessel-I function of
order zero (see [12]). In this representation, µ ∈ [0, 2π) is a
location parameter and κ ∈ R+ is a concentration parameter.
The n-th moment is given by E(einX) = einµIn(κ)/I0(κ).
Similar to the WN distribution, the first circular moment is
sufficient for a full characterization of a VM distribution. Thus,
circular moment matching can be used for the conversion
between WN, VM, and wrapped Dirac mixture distributions.

III. CIRCULAR FILTER

In this section, we introduce approximations of WN distri-
butions and VM distributions with wrapped Dirac mixtures
and vice versa. All approximations rely on circular moment
matching, i. e., the first circular moment is preserved when
converting between the three different types of distributions.
An example of all three distribution types with the same
first circular moments is depicted in Fig. 2. Based on these
approximations, we present a one-dimensional filter that
allows estimation of circular quantities with nonlinear system
models and direct measurements in the presence of WN
distributed noise.

It deserves mentioning that there is no circular analogue to
a filter for linear systems as linearity is a concept of vector
spaces rather than manifolds. Any linear map T has to be
compatible with scalar multiplication [13], i. e., T (c · v) =
c · T (v) for any scalar c and any vector v. This implies
T (0) = T (c · 0) = c · T (0) for every scalar c and thus
T (0)(1− c) = 0. It follows for c 6= 1 that T (0) = 0. Unlike
a vector space, a manifold – in our case a circle – in general
does not have any distinct point zero (the origin) that needs
to be mapped to itself by a linear function.



A. Dirac Mixture Approximation of WN Distribution

1) WN → Dirac Mixture: We consider a WN distribution
with parameters µ and σ. This distribution is approximated
by a wrapped Dirac mixture

fd(x) =
1

3
δ(x− (µ− α)) + 1

3
δ(x− µ) + 1

3
δ(x− (µ+ α))

with three components. Its parameter α is chosen by matching
the first circular moment of the WN distribution

exp

(
inµ− n2σ2

2

)
=

1

3
exp(in(µ− α)) + 1

3
exp(in(µ)) +

1

3
exp(in(µ+ α)) .

We solve for α

⇒ 3 exp

(
−n

2σ2

2

)
= exp(−inα)) + 1 + exp(inα)

= 2 cos(nα) + 1

⇒ 3

2
exp

(
−n

2σ2

2

)
− 1

2
= cos(nα)

and for n = 1, we obtain

α = arccos

(
3

2
exp

(
−σ

2

2

)
− 1

2

)
.

2) Dirac Mixture → WN: For a given wrapped Dirac
mixture

f(x) =

L∑
j=1

ωjδ(x− βj)

with L components and weights ω1, . . . , ωL, we obtain
the parameters of the corresponding WN distribution by
calculating µ as the circular mean

µ = atan2

 L∑
j=1

sin(βj),

L∑
j=1

cos(βj)

 ,

i. e., the argument of the first circular moment, and by
matching the first circular moment to obtain σ

exp

(
inµ− n2σ2

2

)
=

L∑
j=1

ωj exp(inβj)

⇒ exp

(
−n

2σ2

2

)
=

L∑
j=1

ωj exp(in(βj − µ))

⇒− n2σ2

2
= log

 L∑
j=1

ωj exp(in(βj − µ))


⇒σ2 = − 2

n2
log

 L∑
j=1

ωj exp(in(βj − µ))

 .

For n = 1, we have

σ =

√√√√√−2 log
 L∑
j=1

ωj exp(i(βj − µ))


and with

∑L
j=1 ωj exp(i(βj − µ)) ∈ R, we reduce this to a

real-valued equation

σ =

√√√√√−2 log
 L∑
j=1

ωj cos(βj − µ)

 .

B. Dirac-Approximation of VM Distribution

1) VM → Dirac Mixture: Similar to the WN distribution,
a VM distribution can be approximated by a wrapped Dirac
mixture

fd(x) =
1

3
δ(x− (µ− α)) + 1

3
δ(x− µ) + 1

3
δ(x− (µ+ α))

as well. For a given VM Distribution with parameters µ and
κ, we match the first circular moment

In(κ)

I0(κ)
exp(inµ) =

1

3
exp(in(µ− α)) + 1

3
exp(inµ) +

1

3
exp(in(µ+ α))

⇒ 3
In(κ)

I0(κ)
= exp(−inα)) + 1 + exp(inα))

= 2 cos(nα) + 1

⇒ 1

2

(
3
In(κ)

I0(κ)
− 1

)
= cos(nα)

and obtain for n = 1

α = arccos

(
3

2

I1(κ)

I0(κ)
− 1

2

)
.

2) Dirac Mixture → VM: For a given wrapped Dirac
mixture

f(x) =

L∑
j=1

ωjδ(x− βj)

with L components and weights ω1, . . . , ωL, we determine
the parameters of the corresponding VM distribution by
calculating µ as the circular mean

µ = atan2

 L∑
j=1

sin(βj),

L∑
j=1

cos(βj)


like we did for the WN distribution and by matching the first
circular moment, we obtain κ from

In(κ)

I0(κ)
exp(inµ) =

L∑
j=1

ωj exp(inβj)

⇒ In(κ)

I0(κ)
= exp(−inµ)

L∑
j=1

ωj exp(inβj) .
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.

For n = 1, this yields

I1(κ)

I0(κ)
= exp(−iµ)

L∑
j=1

ωj exp(iβj) ,

which can be solved numerically for κ. As can be seen in
Fig. 3, this function is not difficult to invert numerically. The
Bessel functions I1(κ) and I0(κ) approach infinity very fast
even though their ratio I1(κ)

I0(κ)
is always a value in the interval

[0, 1]. To avoid numerical problems, the ratio of Bessel
functions should be calculated by the algorithm described in
[14] (see Fig. 4).

Input: v, x, number of iterations N , 10 by default

Output: Iv+1(x)
Iv(x)

o← min(v, 10);
for i← 0 to N do

r(i+ 1)← x

o+i+0.5+
√

(o+i+1.5)2+x2
;

end
for i← 1 to N do

for k ← 0 to N − i do
r(k + 1)← x

o+k+1+
√

(o+k+1)2+x2 r(k+2)
r(k+1)

;

end
end
y ← r(1);
i← o;
while i > v do

y ← 1
(2i/x+y) ;

i← i− 1;
end
return y;

Fig. 4. Algorithm for calculating the ratio of Bessel functions.

C. Conversion of WN and VM

For any given WN distribution, a VM distribution with
identical first circular moment can be found and vice versa.
This can be done indirectly by conversion to a wrapped Dirac
mixture and subsequent conversion to the desired distribution.
Both steps retain the first circular moment and can be
calculated as described above. However, it is more efficient
to directly convert between WN and VM distributions.

Let µWN , σWN be the parameters of a WN distribution and
µVM , κVM the parameters of a VM distribution. Obviously,
µWN = µVM holds for reasons of symmetry. Matching the
first circular moment

In(κVM )

I0(κVM )
exp(inµVM ) = exp

(
inµWN −

n2σ2
WN

2

)
⇒ In(κVM )

I0(κVM )
= exp

(
−n

2σ2
WN

2

)
yields for n = 1

⇒ I1(κVM )

I0(κVM )
= exp

(
−σ

2
WN

2

)
.

1) VM → WN: This equation can easily be solved for
σWN , which results in

σWN =

√
−2 log

(
I1(κVM )

I0(κVM )

)
.

2) WN → VM: Solving the same equation for κVM is
done numerically. Once again, the ratio of Bessel functions
should be calculated by the algorithm described in [14] (see
Figure 4).

D. Kullback-Leibler Divergence

The Kullback-Leibler divergence of two probability distri-
butions P and Q is a measure of the information lost when
P is approximated by Q. It is given by∫

P (θ) log

(
P (θ)

Q(θ)

)
dθ .

As is obvious from its definition, the Kullback-Leibler
divergence is not a metric because it lacks symmetry. To
illustrate the similarity between the WN and VM distributions,
we show the Kullback-Leibler divergence between a WN
distribution with given σ and the VM distribution with
identical first circular moment (Fig. 5). Due to the fact that we
consider conversions between WN and VM distributions in
both directions, we also show the converse Kullback-Leibler
divergence. Furthermore, we compare the WN distribution
to a non-wrapped Gaussian with equal standard deviation.
Fig. 5 illustrates the fact that a Gaussian distribution is a poor
approximation of a WN distribution for large uncertainties σ.
This result further motivates the use of circular distributions.
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E. Prediction

We consider a system model

θk+1 = ak(θk) + wk

with state θk at time step k, the (possibly nonlinear) system
function ak and additive WN-distributed noise wk with
parameters µwk

, σwk
. Prediction occurs by approximating

the WN density with a wrapped Dirac mixture, propagating
each Dirac component through the system function ak,
approximating the resulting wrapped Dirac mixture with a
WN density, and adding the noise wk by calculating the
convolution (Figure 6).

Input: ak (system function),
µek, σ

e
k (estimated distribution of state),

µwk
, σwk

(distribution of system noise)

Output: µpk, σ
p
k (predicted distribution of state)

/* Dirac approximation */

α← arccos
(

3
2 exp

(
− (σe

k)
2

2

)
− 1

2

)
;

/* application of system function */
β1 ← ak(µ

e
k − α);

β2 ← ak(µ
e
k);

β3 ← ak(µ
e
k + α);

/* conversion of Diracs back to WN */

µ← atan2
(∑3

j=1 sin(βj),
∑3
j=1 cos(βj)

)
;

σ ←
√
−2 log

(
1
3

∑3
j=1 cos(βj − µ)

)
;

/* convolution with noise */
µpk ← (µ+ µwk

) mod 2π;
σpk ←

√
σ2 + σ2

wk
;

Fig. 6. Algorithm for Prediction.

F. Measurement Update

Assume a measurement model

ẑk = θk + vk

with measurement ẑk, state θk and additive WN-distributed
noise vk with parameters µvk , σvk .

With Bayes’ rule, we have

f(θk|ẑk) = c · f(ẑk|θk) · f(θk)

with the normalization constant

c =
1∫ 2π

0
f(ẑk|θk) · f(θk)

.

We calculate f(ẑk|θk) according to

f(ẑk|θk) =
∫ 2π

0

f(ẑk, vk|θk)dvk

=

∫ 2π

0

f(ẑk|θk, vk)fv(vk)dvk

=

∫ 2π

0

δ(ẑk − θk − vk)fv(vk)dvk

= fv(ẑk − θk) ,

where fv is the distribution of the additive noise vk. Thus,
we obtain the equation

f(θk|ẑk) = c · fv(ẑk − θk)f(θk)

for the filtered density. Consequently, filtering is done
by multiplying the densities fv(ẑk − θk) and f(θk) and
subsequent renormalization if necessary (Figure 7). Since
WN distributions are not closed under multiplication, an
intermediate representation of VM distributions is used.
Multiplication of two VM distributions and normalization of
the resulting density is performed as described in [9].

Input: measurement ẑk,
µpk, σ

p
k (predicted distribution of state),

µvk , σvk (distribution of measurement noise)

Output: µek, σek (estimated distribution of state)

/* shift fv by measurement */
µ̃vk ← (ẑk − µvk) mod 2π;
σ̃vk ← σvk ;
/* convert to VM distribution */
µ1, κ1 ←wnToVonMises(µpk, σ

p
k);

µ2, κ2 ←wnToVonMises(µ̃vk , σ̃vk);
/* multiply densities */
C ← κ1 cosµ1 + κ2 cosµ2;
S ← κ1 sinµ1 + κ2 sinµ2;
µ← atan2(S,C);
κ←

√
S2 + C2;

/* convert back to WN distribution */
µek, σ

e
k ←vonMisesToWn(µ, κ);

Fig. 7. Algorithm for measurement update.



IV. SIMULATION

Consider the following example: A robot arm is moved
by a single rotary joint. Since the robot arm is affected by
gravity, the torque acting on the rotary joint depends on the
current angle. The robot arm is observed by some sensor that
is capable of measuring the absolute orientation. Our goal is
to estimate the angle of the rotary joint.

The system can be modeled by

θk+1 = ak(θk) + wk

with system function

ak(θk) = θk + c1 sin(θk)︸ ︷︷ ︸
gravity

+ c2︸︷︷︸
velocity

,

where θk is the state and wk is WN-distributed noise. The
constants c1, c2 can be derived from a physical model of the
system. The measurement equation is given by

ẑk = θk + vk ,

where ẑk is the orientation measurement and vk is WN-
distributed noise.

The noise parameters have been chosen as µvk = µwk
= 0,

σvk = 0.1, σwk
= 0.1 and the physical parameters have been

chosen as c1 = 0.1, c2 = 0.15. The initial state estimate at
time step k = 0 is given by µe0 = 3, σe0 = 2. The true initial
state is given by θ̃0 = 0. Obviously, the initial estimate is
very poor and has high uncertainty in this example.

We compare our approach with the UKF [2], because it is
commonly used in nonlinear estimation problems involving
directional quantities. The UKF is based on the assumptions
that all occurring probability distributions are Gaussian. Since
the UKF does not take into account the periodicity of angular
states and measurements, we also consider a modified version
of the UKF, where

µk ← µk mod 2π

is enforced after every prediction and update step and

z̃k ←

{
ẑk, |µp − z| ≤ π
ẑk + 2π sign(µp − z), |µp − z| > π

is used as a measurement. Because ẑk ∈ [0, 2π), the modified
measurement z̃k is always in the range [µp − π, µp + π].

The results of the simulation over a period of 150 time
steps are depicted in Figure 8. Because the discontinuity
between 0 and 2π can make a regular two-dimensional plot
misleading, we also provide a three-dimensional plot where
the angles are depicted as points on a cylinder. Furthermore,
plots of the angular error

min(|θ̂k − µek|, 2π − |θ̂k − µek|)

at every time step k are provided. The angular error describes
the shorter length of the two possible paths between two
points on the circle. It is obvious that the unmodified UKF
performs very poorly when it encounters the discontinuity at
2π. The modified UKF and the proposed filter produce good
estimates, but the proposed filter achieves smaller 3σ-bounds.

The angular root mean square error (angular RMSE)√√√√ 1

150

150∑
k=1

(
min(|θ̂k − µek|, 2π − |θ̂k − µek|)

)2
of the different filters was calculated for 100 runs and is
depicted as a boxplot in Figure 9. As can be seen, the
estimation error of the original UKF is very large (mean
0.6135, median 0.5917). The modified UKF is a significant
improvement (mean 0.1458, median 0.1448), but does not
achieve as good results as our proposed filter (mean 0.0812,
median 0.0812). In this example, the mean error of the UKF
is 656% higher than the proposed filter and the mean error of
the modified UKF is still 80% higher. Even though our filter
is computationally somewhat more demanding than the UKF,
it is easily fast enough for typical real-time applications.

UKF modified UKF proposed filter
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Fig. 9. Angular RMSE over 100 runs, for the proposed filter, the UKF and
the modified UKF.

V. CONCLUSION

We have presented a filter for the estimation of angles
that can be applied to nonlinear systems. Simulations with
a simple example system suggest that the proposed filter is
vastly superior to the commonly used UKF in the case of
circular estimation problems. Furthermore the proposed filter
gives better results than a modified UKF enhanced to handle
circular estimation.

Future research might include the estimation of orientations
in 3D. In addition, for many practical applications it is
desirable to combine the estimation of directional quantities
and Rn-vectors in a single filter, for example for the purpose
of 6D pose estimation.
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Fig. 8. Simulation results, from left to right: UKF, modified UKF, proposed filter. All angles as well as the angular error are given in radians.
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