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Abstract— We propose an efficient method for approximating
arbitrary Gaussian densities by a mixture of Dirac compo-
nents. This approach is based on the modification of the
classical Cramér-von Mises distance, which is adapted to the
multivariate scenario by using Localized Cumulative Distribu-
tions (LCDs) as a replacement for the cumulative distribution
function. LCDs consider the local probabilistic influence of a
probability density around a given point. Our modification of
the Cramér-von Mises distance can be approximated for certain
special cases in closed-form. The created measure is minimized
in order to compute the positions of the Dirac components for
a standard normal distribution.

I. INTRODUCTION

State estimation in dynamic systems is well-understood in
the situation of a linear system equation and additive Gaussian
noise. In this situation, the Kalman-Filter [11] is an optimal
estimator of the system state. This task becomes much more
difficult, when the system equation is nonlinear and the noise
is either not additive or not Gaussian. Many results exist for
special cases of this general nonlinear system.

When the effects making up the disturbance of a dynamic
system are additive and independent identically distributed
(i.i.d.), it is often a good approximation to assume the system
noise as Gaussian. The popularity of the Gaussian distribution
as a noise assumption for uncertain dynamic systems is due
to the central limit theorem, which states that normalized
sums of i.i.d. random variables with finite variance converge
to a Gaussian distributed random variable [14]. Furthermore,
in dynamic systems with Gaussian additive noise and mild
nonlinearity, the posterior density can be approximated by a
Gaussian distribution.

A well-known approach to handling nonlinear dynamic
systems is by linearizing the system equation using its
Taylor series expansion, which is the basic principle of
the Extended Kalman Filter [15] (EKF). Only in a limited
scope of applications, the results of the EKF are sufficiently
satisfactory. Especially when there are strong nonlinearities,
the EKF delivers poor results, because the linearized equation
does not sufficiently capture the system behaviour.

One way to avoid such problems in estimation is the use of
discrete probability distributions on a continuous domain as a
description of system uncertainty. Usage of discrete densities
offers the advantage of easy propagation through the system
equation and thus, easier prediction of the true system state.

In order to use discrete probability distributions as an
approximately correct description of system uncertainty, it
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is desirable to approximate continuous probability distribu-
tions by a mixture of Dirac components. Particularly, the
approximation of a Gaussian distribution is of considerable
interest. Existing methods to perform this approximation can
be divided into two categories.

First, random sampling can be used to approximate
probability distributions. These Sequential Monte Carlo
methods, such as the particle filter [3], are easily implemented,
but usually require a large number of random samples.
Furthermore, the particle filter performs badly with a rising
problem dimensionality. A related concept is used in the
Ensemble Kalman Filter [6], where sampling is applied in
high-dimensional problems to propagate a sample covariance
instead of the full covariance matrix.

Second, the probability density function of a continuous
distribution can be approximated by a direct placement of
the Dirac mixture components preserving certain distribution
characteristics. A well-known example for this approach is
the Unscented Kalman Filter [10], which places 2N+1 Dirac
components into an N -dimensional state space.

Approximating probability distributions by Dirac mix-
tures can be done efficiently using classical distribution
representations in the univariate case [13]. Our approach
towards computing a Dirac Mixture approximation of the
multivariate Gaussian distribution is based on minimizing
a modification of the Cramér-von Mises distance. This
modification incorporates Localized Cumulative Distributions
[8] (LCDs) as a replacement for the classical cumulative
distribution function and it can be applied to the multivariate
case. This framework was already applied for reducing the
number of dirac components for efficient control[5].

In this paper, we propose an efficient way of computing
a Dirac mixture approximation of the Gaussian distribution.
This is done by minimizing the modification of the Cramér-
von Mises distance. This has originally been done by means of
numerical quadrature [7]. This work presents an efficient way
for computing a Dirac mixture approximation of the standard
normal densities, which is later used for approximating
an arbitrary Gaussian distribution. By using this strategy,
applications in real-time environments are possible.

The remainder of this paper is structured as follows. In
Sec. II, the Localized Cumulative Distribution is presented
and applied within a modification of the classical Cramér-von
Mises distance. Computation the modification of the Cramér-
von Mises distance for the combination of a Dirac mixture
and a Gaussian distribution is done in Sec. III. In Sec. IV,
this computation is applied to approximating an Gaussian
distribution using the Cholesky decomposition. The paper is
concluded in Sec. V. Proofs of the new theorems are given
in the appendix.



II. LOCALIZED CUMULATIVE DISTRIBUTIONS IN A
MODIFIED CRAMÉR-VON MISES DISTANCE

A. Localized Cumulative Distribution
Using the classical cumulative distribution function in the

multivariate case is often not meaningful. In one dimension,
there are two meaningful definitions of a cumulative distribu-
tion function for a random variable X , which are P(X ≤ a)
or P(X > a) for a given a ∈ [0, 1]. They can obviously be
simply computed from each other. Already in two dimensions
this is not the case, where four possible definitions exist.

Localized Cumulative Distributions (LCDs) avoid this
problem by describing a probability density in a localized way;
that is, the probability mass around each point is considered
with a certain degree of magnitude. In many applications
an LCD presents a suitable replacement for the CDF. Here,
LCDs are used for approximation of probability distributions.
First, we give a definition of LCDs and discuss some of their
properties. Then, we use them to introduce a modification of
the Cramér-von Mises Distance. Further discussion of LCDs
can be found in [8].

Definition II.1 (Localized Cumulative Distribution)
Let g(x) be an n-dimensional density function. The
corresponding Localized Cumulative Distribution is defined
as

F (m, b) =

∫
Rn

g(x) ·K(x−m, b) dx ,

where b ∈ Rn+ and a suitable (symmetric & integrable) kernel
K(x−m, b). Here, m characterizes the location of the kernel
and b its size.

The location m of the kernel describes the “center of inter-
est” around which the probability mass shall be considered.
The size b basically can be thought of as the size of the
region around m having a strong influence on the LCD.

The kernel function K(x−m, b) determines in what way
the probability mass around m influences the value of the
LCD. We focus our further attention on separable kernels

K(x−m, b) =
n∏
k=1

K(x(k) −m(k), b(k)) .

Furthermore, it will be sufficient to consider the probability
mass equally in each direction. Thus, the size can be described
by the scalar b ∈ R+. The kernel used in the remainder of
this paper is of Gaussian type. It is defined by

K(x(k) −m(k), b) = exp

(
−1

2

x(k) −m(k)

b2

)
.

B. A Modification of the Cramér-von Mises Criterion
The classical Cramér-von Mises criterion was originally

proposed to test whether an empirical probability distribution
F1 fits an assumed cumulative distribution function F2. It is
obtained by computing∫

R
(F1(x)− F2(x))

2 dF1(x) .

Many extensions were made to the original criterion. A
major contribution in the field of testing was made by
Anderson [2], who proposed using this distance measure
for testing whether two samples were drawn from the same
distribution. Several authors (see, e.g., [12], [4]) proposed
the usage of weights in this distance measure. Our proposed

modification of this distance shall enable the comparison
of similarity of multivariate distributions, no matter whether
these distributions are continuous or discrete.

Definition II.2 (Modified Cramér-von Mises Distance)
The modified Cramér-von Mises distance D between two
LCDs F̃ (m, b) and F (m, b) is given by

D =

∫
R+

w(b)

∫
Rn

(
F̃ (m, b)− F (m, b)

)2
dm db ,

where w(b) is a suitable weighting function.

III. EFFICIENT REPRESENTATION FOR THE MODIFIED
CRAMÉR-VON MISES DISTANCE

Computing the Dirac mixture approximation of a Gaussian
distribution is carried out by minimizing the modified Cramér-
von Mises distance. In earlier works [7], numerical integration
techniques were used for this computation.

We simplify the earlier computation for the standard
normal case by deriving efficiently computable formulas
for the modification of the Cramér-von Mises distance and
its derivative. For the approximation of a standard normal
distribution by a Dirac mixture, we need both the LCD
representation of Dirac mixture distributions and the LCD
representation of standard normal distributions.

The LCD of an N -dimensional Dirac mixture consisting
of L components with respective weights wi is given by

F (m, b) =

L∑
i=1

wi

N∏
k=1

exp

(
−1

2

x
(k)
i −m(k)

b2

)
.

The LCD of a N -dimensional standard normal distribution
is given by

F̃ (m, b) =
bN(√

1 + b2
)N N∏

k=1

exp

(
−1

2

(m(k))2

1 + b2

)
.

A. Computation of the Modified Cramér-von Mises Distance

We compute our modification of the Cramér-von Mises
distance using the weighting function

w(b) =

{
b1−N , b ∈ [0, bmax]
0 , otherwise .

Together with the above LCDs, this weighting function gives
rise to an integral representation of the modification of the
Cramér-von Mises distance, which is stated in the following
theorem.

Theorem III.1 For the LCDs of the Gaussian F̃ (m, b) and
the Dirac mixture F (m, b) and the weighting function

w(b) =

{
b1−N , b ∈ [0, bmax]
0 , otherwise ,

the distance D can be represented as

D = D1 − 2D2 +D3 with Di =

∫
R+

w(b)Pi db ,



where

P1 =π
N
2 b2N

N∏
k=1

1√(
σ(k)

)2
+ b2

,

P2 =(2π)
N
2 b2N

 N∏
k=1

1√(
σ(k)

)2
+ 2b2


L∑
i=1

wi exp

−1

2

N∑
k=1

(
x
(k)
i

)2
(
σ(k)

)2
+ 2b2

 ,

P3 =π
N
2 bN

L∑
t=1

L∑
j=1

wiwj exp

(
−1

2

Ti,j
2b2

)
and

Ti,j =

N∑
k=1

(
x
(k)
i − x

(k)
j

)2
.

A proof of this theorem is given in [7]. The variable bmax
characterizes the area around each point, which shall be
consindered in the computation of the modification of the
Cramér-von Mises distance.

Numerical integration techniques can be used for comput-
ing D. Our goal is to simplify this computation. The integral
D3 is given by

D3 =π
N
2

L∑
i=1

L∑
j=1

wiwj

× b2max

2
exp

(
−1

2

Ti,j
2b2max

)
+ Ti,j Ei

(
−1

2

Ti,j
2b2max

)
.

Here, Ei(x) is the exponential integral defined as

Ei(x) =

∫ x

−∞

et

t
dt .

For the remaining computation, we consider the case of a
standard normal distribution (i.e., σ = 1). In this situation,
the integral D1 can easily be computed by the following
theorem.

Theorem III.2 The integral D1 is given by
D1 = π

N
2 IN (bmax) ,

where In(t) is

I1(t) =
1

2

(
t
√
1 + t2 − arcsinh(t)

)
,

I2(t) =
1

2

(
t2 − log(1 + t2)

)
,

I2k(t) =2k

(
I2(t)−

k−1∑
i=1

t2i(
√
1 + t2)2−2i

2i(2i− 2)

)

− t2k(
√
1 + t2)2−2k

(2k − 2)
,

I2l+1(t) =(2l + 1)

(
I1(t)−

l−1∑
i=1

t2i+1(
√
1 + t2)1−2i

(2i+ 1)(2i− 1)

)

− t2l+1(
√
1 + t2)1−2l

(2l − 1)
,

for arbitrary k, l ∈ N, where k ≥ 2, l ≥ 1.

PROOF. See Appendix A. �
With this result, the integral D1 can be computed directly.

A similar, direct computation is not possible for D2. The
following result suggests how the computation of D2 can
be simplified when the dimension N is even. D2 can be
decomposed into its weighted summands, which shall be
named D

(i)
2 , that is D2 = (2π)

N
2

∑L
i=1 wiD

(i)
2 . Using this

notation, we can state our next result.

Theorem III.3 If N = 2m for m ∈ N, the integral D(i)
2 is

given by
D

(i)
2 = Jm,m(bmax)− Jm,m(0)

with

Jk,k(b) =
1

2k

k∑
j=0

(−1)j
(
k

j

)
J0,j(b) ,

and the base cases

J0,0(b) =
1 + 2b2

4
exp

(
− c

2 + 4b2

)
+
c

8
Ei

(
− c

2 + 4b2

)
,

J0,1(b) =−
1

4
Ei

(
− c

2 + 4b2

)
,

J0,l(b) = exp

(
− c

2 + 4b2

)
×

l∑
j=2

(l − 2)! 2l−j−1

(l − 2)! cl−j+1 (1 + 2b2)j−2
,

for arbitrary l ∈ N with l ≥ 2 and c =
∑N
k=1

(
x
(k)
i

)2
.

PROOF. See Appendix B. �
Using this representation seems to be more complicated

than using a quadrature algorithm on the original integral.
This, however, is not the case. First, there are efficient
algorithms for computating the exponential integral. Second,
the exponential integral can be approximated for large values
of bmax.

B. Efficient Representation of the Gradient

Minimizing D with respect to the position of the Dirac
components can be performed using a numerical optimization
method. Usually, a finite difference method is used to
approximate the derivative of D. In order to speed up the
optimization procedure, our goal is to derive an efficiently
computable representation of the gradient of D. The following
theorem shows how the computation of the gradient can be
decomposed into computing two integrals.

Theorem III.4 The gradient for the general distance measure
in Theorem III.1 with respect to the locations of the Dirac
components is given by

G
(η)
ξ =

δD

δx
(η)
ξ

= G
(η,1)
ξ +G

(η,2)
ξ

with



G
(η,1)
ξ = 2 (2π)

N
2 wξ x

(η)
ξ

∫ bmax

0

bN+1(
σ(η)

)2
+ 2 b2 N∏

k=1

1√(
σ(k)

)2
+ 2 b2

 exp

−1

2

N∑
k=1

(
x
(k)
ξ

)2
(
σ(k)

)2
+ 2 b2

 db

and

G
(η,2)
ξ = −πN

2 wξ

L∑
i=1

wi

(
x
(η)
ξ − x

(η)
i

)
∫ bmax

0

1

b
exp

(
−1

2

Tξ,i
2 b2

)
db

for component index ξ = 1, . . . , L and dimension index η =
1, . . . , N with

Tξ,i =

N∑
k=1

(
x
(k)
ξ − x

(k)
i

)2
.

This theorem was also proven in [7]. G(η,2)
ξ was also

computed there and is given by

G
(η,2)
ξ =

π
N
2

2
wξ

L∑
i=1

wi(x
(η)
ξ − x

(η)
i ) Ei

(
−1

2

Tξ,i
2b2max

)
.

The integral G(η,1)
ξ can be computed in a similar way

as Theorem III.3. Thus, a simple representation is also
restricted to the even-dimensional case. Again, we decomose
G

(η,1)
ξ into its weighted summands G(η,1,i)

ξ , that is G(η,1)
ξ =

2(2π)
∑L
i=1 wξG

(η,1,i)
ξ .

Theorem III.5 If N = 2 k for k ∈ N, the Integral G(η,1)
ξ is

given by
G

(η,1,i)
ξ = x

(η)
ξ (Jk,k+1(bmax)− Jk,k+1(0))

with

Jk,k+1(b) =
1

2k

k∑
j=0

(−1)j
(
k

j

)
J0,j+1(b) ,

where the base cases J0,i(b) are the same as in Theorem III.3.

Together with our previous result on the computation of
G

(η,2)
ξ , this theorem gives us the ability to speed up the

optimization. In a practical implementation, a further en-
hancement can be achieved by using precomputed exponential
integral values at each optimization step, because the values
of the exponential integrals computed during the computation
of D also need to be computed for G(η)

ξ .

IV. DIRAC MIXTURE APPROXIMATION
OF THE GAUSSIAN DISTRIBUTION

For approximating arbitrary Gaussian distributions, we
make use of the results presented in the preceding section.
For this generalization, the Mahalanobis transform [9] will
be used. This will introduce some suboptimality and reduce
the need for repeated numerical integration compared to a
direct approximization as presented in [7]. As a first step,
it is helpful to take a look at the Mahalanobis transform. A
matrix square-root is taken in order to achieve the desired
covariance.

Theorem IV.1 (Mahalanobis Transform) Let C ∈ Rn×n
be a covariance matrix (i.e., symmetric and positive definite),
µ ∈ Rn, and Y ∼ N (0, In). Then C1/2 exists and

X := C1/2Y + µ

is a N (µ,C) distributed random vector.

PROOF. See [9], Theorem 4.5. �
This transform can also be applied to each of our Dirac

components. Thus, our method for computing a Dirac
mixture approximation of N (µ,C) can be summarized in
the following three steps.

1) Compute a Dirac mixture approximation of the stan-
dard normal distribution with the desired number of
components in the desired dimensionality.

2) Compute the matrix square-root of C.
3) Apply the Mahalanobis transform to each Dirac com-

ponent and correct the mean of each component by
adding µ.

We apply this sampling technique to the estimation problem
in a nonlinear dynamic system. In this scenario, our deter-
ministic particle positioning leads to a faster convergence
rate of the mean compared to random sampling with the
same amount of particles. This is due to the fact, that a
deterministic sampling method is capturing the shape of a
probability distribution better than simple random sampling.

The step involving numerical computation for the exponen-
tial integral has only to be done once in advance. As long as
the number of used particles stays the same, there is no need
for recomputing the whole approximation. The Mahalanobis
transform is applied at each time step respectively. The
Cholesky decomposition can be used for the computation of
this transform.

The performance of the overall optimization procedure
for minimizing D with respect to the positions of the Dirac
components is highly dependent on the optimization algorithm.
The computation of the integral D is in O(L2N) for a
fixed problem dimension, where L is the number of Dirac
components and N is the number of dimensions. The driving
force behind this computational complexity is D3.

In the even-dimensional case, there are several ways to
enhance performance. They are based on the fact, that all
numerical computations in this situation come down to
computing exponential integrals. Besides reducing the number
of computations by reusing some results from the computation
of D for the computation of its gradient, a more promising
strategy can be applied. Numerical computations can be
completely avoided by using a meaningful approximation
[1] to the exponential integral, such as

Ei(x) ≈ γ + ln |x|+ x , x > 0 ,

where γ ≈ 0.5772 is the Euler-Mascheroni constant.

Example IV.1 Our goal is to approximate the two-dimensional
Gaussian density N (0,C), where C is the covariance matrix

C =

(
2.29 0.4
0.4 2.29

)
.

In the first row of Figure 1 shows the approximation of the standard
normal density for a mixture of 8, 12, 14, 16 Dirac components
respectively. In the second row, the same approximations are shown
after retransforming the Dirac Mixtures with a Cholesky matrix
square-root of C.
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Fig. 1. Dirac Mixture approximations of a standard normal distribution (first line) and the respective approximations after considering the covariance
matrix given in Example IV.1.

V. CONCLUSION
In this paper, an efficient way of approximating the standard

normal distribution with a mixture of Dirac components was
proposed. This was performed by efficiently computing a
modification of the Cramér-von Mises distance, which is
based on a localized replacement of the classical cumulative
distribution function. We showed a way to approximate
the modification of the Cramér-von Mises distance and
its gradient in closed-form for the even-dimensional case
and thus reduced the computational burden. The presented
approach uses the Cholesky decomposition. It can also be
modified to using other decompositions when generalizing
the computation of the Dirac mixture approximation of a
standard Gaussian distribution to the general Gaussian case.

ACKNOWLEDGMENT
This work was partially supported by a grant from the

German Research Foundation (DFG) within the Research
Training Group RTG 1194 “Self-organizing Sensor-Actuator-
Networks”.

APPENDIX
A. Proof of Theorem III.2

For computing the integral D1, it is necessary to compute

In(t) :=

∫ t

0

bn+1(√
1 + b2

)n db ,

where n ∈ N. The base cases can be computed directly. For
I1(t), we use integration by parts. The integrand is separated
into f(b) = b/2 and g(b) =

√
1 + b2. It follows

I1(t) =

∫ t

0

b2√
1 + 2b2

db =

∫ t

0

f(b)g′(b) db

=

[
1

2
b
√
1 + b2

]t
0

−
∫ t

0

1

2
√
1 + b2

=
1

2
t
√

1 + t2 − arcsinh(t)

2
.

For I2(t), we obtain

I2(t) =

∫ t

0

b3

1 + b2
db =

∫ t

0

b(b2 + 1− 1)

1 + b2
db

=

∫ t

0

b− b

1 + b2
db =

t

2
− 1

2
log(1 + t2) .

For considering the case n > 2, let f(b) :=
√
1 + b2 and

g(b) := bn(1 + b2)(−n+1)/2. The derivatives of f and g are
f ′(b) = b(1 + b2)−1/2 and

g′(b) =
nbn−1

(
√
1 + b2)n−1

− (n− 1)bn+1

(
√
1 + b2)n−1

.

The integrand can be separated into f ′(b)g(b), Using integra-
tion by parts, we obtain

In(t) =

∫ t

0

bn+1(√
1 + b2

)n db =

∫ t

0

f ′(b)g(b) db

=

[
bn

(1 + b2)n−2

]t
0

−
∫ t

0

nbn−1

(
√
1 + b2)n−2

− (n− 1)bn+1

(
√
1 + b2)n

db

=
tn

(1 + t2)n−2
− nIn−2(t) + (n− 1)In(t) .

This is used to compute a recursion formula

In(t) =
1

n− 2

(
nIn−2(t)−

tn

(1 + t2)n−2

)
.

Resolving this recursion yields the formulas for I2k(t) and
I2l+1(t). �

B. Proof of Theorem III.3

We define

J ′j,k(b) :=
b2j+1

(1 + 2b2)k
exp

(
−1

2

c

1 + 2b2

)
.



In the above equation and the remainder of the proof, we
assume j, k ∈ N0. Our goal is to compute the antiderivative
of J ′k,k(b). For j, k ≥ 1, it holds

b2j+1

(1 + 2b2)k
=

b2j−1

2(1 + 2b2)k−1
− b2j−1

2(1 + 2b2)k

Thus, we observe the recursive relation

J ′j,k(b) =
1

2

(
J ′j−1,k−1(b)− J ′j−1,k(b)

)
. (1)

Representing this recursion in a triangular way leads to
a geometric scheme based on Pascal’s triangle. Thus, the
equation for Jk,k(b) is obtained.

For computing J0,j(b) with j ≥ 2, we use integration by
parts. Therefore, we define

f(b) :=
1

2c(1 + 2b2)j−2
, g(b) := exp

(
c

2 + 4b2

)
and obtain∫ t

0

J ′0,j(b) db =

∫ t

0

f(b)g′(b) db

=

 exp
(
− c

2+4b2

)
2c(1 + 2b2)j−2

t
0

−
∫ t

0

4b(2− j) exp
(
− c

2+4b2

)
2c(1 + 2b2)j−1

db .

This yields the recursive equation

J0,j(b) =

 exp
(
− c

2+4b2

)
2c(1 + 2b2)j−2

+
2(j − 2)

c
J0,j−1(b) .

The base case J0,2(b) is straight forward∫ t

0

J ′0,2(b) db =

∫ t

0

b

2 + 4b2
exp

(
− c

(1 + 2b2)2

)
db

=
1

2c

∫ t

0

2cb

(1 + 2b2)2
exp

(
− c

2 + 4b2

)
=

1

2c

∫ t

0

8cb

(2 + 4b2)2
exp

(
− c

2 + 4b2

)
=

[
1

2c
exp

(
− c

2 + 4b2

)]t
0

.

Using this base case, the recursion above can be resolved,
which yields our formula for J0,j(b) for j ≥ 2.

For computing the antiderivative J0,1(b), substitution is
used. We define ϕ(b) := −c(2+4b2)−1. Using this defintion,
we obtain∫ t

0

J ′0,j(b) db =

∫ t

0

b

1 + 2b2
exp

(
− c

2 + 4b2

)
db

=− 1

4

∫ t

0

ϕ′(b)

ϕ(b)
exp(ϕ(b)) db

=− 1

4

∫ ϕ(t)

ϕ(0)

ex

x
dx

=− 1

4

[
Ei

(
− c

2 + 4b2

)]t
0

.

Handling J ′0,0(b) is done in two steps. First, integration
by parts is used. This is done by introducing f(b) = b2/2
and g(b) = exp(−c(2 + 4b2)−1). Second, the computation

is reduced to computing J0,1(b) and J0,2(b). Putting it all
together yields∫ t

0

J ′0,0(b) db =

∫ t

0

f ′(b)g(b) db

=

[
b2

2
exp

(
− c

2 + 4b2

)]t
0

−
∫ t

0

8cb3

2(2 + 4b2)2
exp

(
− c

2 + 4b2

)
db .

The integrand in the last integral is c · J ′1,2(b). Using (1), we
get

J0,0(b) =
b2

2
exp

(
− c

2 + 4b2

)
− c

2
J0,1(b) +

c

2
J0,2(b)

=
1 + 2b2

4
exp

(
− c

2 + 4b2

)
+
c

8
Ei

(
− c

2 + 4b2

)
,

which completes the proof.
�
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