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Abstract—This work considers filtering of uncertain data
defined on periodic domains, particularly the circle and the
manifold of orientations in 3D space. Filters based on the Kalman
filter perform poorly in this directional setting as they fail to take
the structure of the underlying manifold into account. We present
a recursive filter based on the Bingham distribution, which is
defined on the considered domains. The proposed filter can be
applied to circular filtering problems with 180 degree symmetry

and to estimation of orientations in three dimensional space.

It is easily implemented using standard numerical techniques
and suitable for real-time applications. We evaluate our filter
in a challenging scenario and compare it to a Kalman filtering
approach adapted to the particular setting.

Index Terms—angular quantities, circular data, directional
statistics, recursive filtering

This is an extended version of the paper Recursive Estimation
of Orientation Based on the Bingham Distribution published
at the 16th International Conference on Information Fusion
(Fusion 2013), which received the Best Student Paper Award,
First Runner-Up.

1. INTRODUCTION

Tracking cars, ships, or airplanes may involve estimation
of their current orientation or heading. Furthermore, many
applications in the area of robotics or augmented reality
depend on reliable estimation of the pose of certain objects.
When estimating the orientation of two-way roads or relative
angles of two unlabeled targets, the estimation task can be
thought of as estimation of a directionless orientation. Thus,
the estimation task reduces to estimating the alignment of an
axis, i.e., estimation with 180° symmetry.

All these estimation problems share the need for processing
angular or directional data, which differs in many ways from
the linear setting. First, periodicity of the underlying manifold
needs to be taken into account. Second, directional quantities
do not lie in a vector space. Thus, there is no equivalent
to a linear model, as there are no linear mappings. These
problems become particularly significant for high uncertainties,
e.g., as a result of poor initialization, inaccurate sensors such
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Fig. 1: Bingham probability density function with M = I,
and Z = diag(—8,0) as a 3D plot. This corresponds to a
standard deviation of 16°.

as magnetometers, or sparse measurements causing a large
integration error.

In many applications, even simple estimation problems
involving angular data are often considered as linear or
nonlinear estimation problems on linear domains and handled
with techniques such as the Kalman Filter [19], the Extended
Kalman Filter (EKF), or the Unscented Kalman Filter (UKF)
[17]. In a circular setting, most approaches to filtering suffer
from assuming a Gaussian probability density at a certain
point. They fail to take into account the periodic nature of the
underlying domain and assume a (linear) vector space instead
of a curved manifold. This shortcoming can cause poor results,
in particular when the angular uncertainty is large. In certain
cases, the filters may even diverge.

Strategies to avoid these problems in an angular setting
involve an “intelligent” repositioning of measurements (typi-
cally by multiples of ) or even discarding certain undesired
measurements. Sometimes, nonlinear equality constraints have
to be fulfilled, for example, unit length of a vector, which



makes it necessary to inflate the covariance [16]. There are
also approaches that use operators on a manifold to provide
a local approximation of a vector space [13]. While these
approaches yield reasonable results in some circumstances,
they still suffer from ignoring the true geometry of circular
data within their probabilistic models, which are usually based
on assuming normally distributed noise. This assumption is
often motivated by the Central Limit Theorem, i.e., the limit
distribution of a normalized sum of i.i.d. random variables
with finite variance is normally distributed [42]. However, this
motivation does not apply to uncertain data from a periodic
domain. Thus, choosing a circular distribution for describing
uncertainty can offer better results.

In this paper, we consider the use of the Bingham distribution
[5] (see Fig. 1) for recursive estimation. The Bingham distribu-
tion is defined on the hypersphere of arbitrary dimension. Here,
we focus on the cases of two- and four-dimensional Bingham
distributed random vectors and apply our results to angular
estimation with 180° symmetry and estimating orientation in
3D space.

Estimating orientation is achieved by using unit quaternions
to represent the full 3D orientation of an object. It is well
known that quaternions avoid the singularities present in other
representations such as Euler angles [25]. Their only downsides
are the fact that they must remain normalized and the property
that the quaternions ¢ and —q represent the same orientation.
Both of these issues can elegantly be resolved by use of the
Bingham distribution, since it is by definition restricted to the
hypersphere and is 180° symmetric.

This work extends our results on Bingham filtering [32] and
the first-order quaternion Bingham filter proposed in [11] in
several ways. First of all, we present a relationship between
the two-dimensional Bingham distribution and the von Mises
distribution and we show how to exploit it to obtain a more
efficient way of computing the normalization constant and
its derivatives. Furthermore, we show a relation to the von
Mises-Fisher distribution, which can be used to speed up
parameter estimation and moment matching procedures in
an important special case. In that situation, we avoid the
need for precomputed lookup tables. This is of considerable
interest because the computation of the normalization constant
plays a crucial role for the performance of the Bingham filter.
Finally, we perform a more thorough evaluation of both two-
and four-dimensional scenarios using different types of noise
distributions and different degrees of uncertainty.

This paper is structured as follows. First, we present an
overview of previous work in the area of directional statistics
and angular estimation (Sec. 2). Then, we introduce our key
idea in Sec. 3. In Sec. 4, we give a detailed introduction to the
Bingham distribution and in Sec. 5, we derive the necessary
operations needed to create a recursive Bingham filter. Based on
these prerequisites, we introduce our filter in Sec. 6. We have
carried out an evaluation in simulations, which is presented in
Sec. 7. Finally, we conclude this work in Sec. 8.

2. RELATED WORK

Directional statistics is a subdiscipline of statistics, which
focuses on dealing with directional data. That is, it considers
random variables which are constrained to lie on manifolds
(for example the circle or the sphere) rather than random
variables located in d—dimensional vector spaces (typically
R%). Classical results in directional statistics are summed up
in the books by Mardia and Jupp [37] and by Jammalamadaka
and Sengupta [15]. Probability distributions on the unit sphere
are described in more detail in [6].

There is a broad range of research investigating the two-
dimensional orientation estimation. A recursive filter based on
the von Mises distribution for estimating the orientation on
the SO(2) was presented in [3], [45]. It has been applied to
GPS phase estimation problems [44]. Furthermore, a nonlinear
filter based on von Mises and wrapped normal distributions
was presented in [30], [31]. This filter takes advantage of
the fact that wrapped normal distributions are closed under
convolution and the fact that von Mises distributions are closed
under Bayesian inference. This filter has also been applied to
constrained object tracking [29].

In 1974, Bingham published the special case for three
dimensions of his distribution in [5], which he originally
developed in his PhD thesis [4]. Further work on the Bingham
distribution has been done by Kent [21], [22] as well as Jupp
and Mardia [18], [35]. So far, there have been a few applications
of the Bingham distribution, for example in geology [36], [28],
[33].

Antone published some results on a maximum likelihood
approach for Bingham-based pose estimation in 2001 [2].
However, this method was limited to offline applications. In
2011, Glover used the Bingham distribution for a Monte
Carlo based pose estimation [10], which he later generalized
into a quaternion-based recursive filter [11] and applied it
to tracking the spin of a ping pong ball [12]. Glover also
released a library called 1ibbingham [9] that includes C and
MATLAB implementations of some of the methods discussed
in Sec. 4. It should be noted that our implementation is not
based on libbingham. Our implementation calculates the
normalization constant online, whereas 1ibbingham relies
on values that have been precomputed offline. In the case
of a two-dimensional Bingham-distributed random vector, the
computation of the normalization constant of the corresponding
probability density function reduces to the evaluation of Bessel
functions. In higher dimensions, a saddlepoint approximation
can be used [26].

In 2013, we proposed a recursive Bingham filter for 2D axis
estimation [32], which serves as a foundation for this paper.
We also published a nonlinear generalization to the quaternion
case in [8].

3. KEY IDEA OF THE BINGHAM FILTER

In this paper, we derive a recursive filter based on the
Bingham distribution for two- and four-dimensional random
vectors of unit length, because they can be used to represent
orientations on the plane and in three-dimensional space.



Rather than relying on approximations involving the Gaussian
distribution, we chose to represent all occurring probability
densities as Bingham distributions. The Bingham distribution is
defined on the hypersphere and is antipodally symmetric. Our
use of the Bingham distribution is motivated by its convenient
representation of hyperspherical random vectors, its relationship
to the Gaussian distribution, and a maximum entropy property
[35]. Although we restrict ourselves to the two- and four-
dimensional cases in this paper, we would like to emphasize
that some of the presented methods can easily be generalized
to higher dimensions.

In order to derive a recursive filter, we need to be able
to perform two operations. First, we need to calculate the
predicted state at the next time step from the current state and
the system noise affecting the state. In a recursive estimation
problem in R? with additive noise, this involves a convolution
with the noise density. We provide a suitable analogue on
the hypersphere in order to account for the composition of
uncertain rotations. Since Bingham distributions are not closed
under this operation, we present an approximate solution to
this problem based on matching covariance matrices.

Second, we need to perform a Bayes update. As usual,
this requires the multiplication of the prior density with
the likelihood density. We prove that Bingham distributions
are closed under multiplication and show how to obtain the
posterior density.

4. BINGHAM DISTRIBUTION

In this section, we lay out the Bingham distribution and
the fundamental operations that we use to develop the filter
and discuss its relation to several other distributions. The
Bingham distribution on the hypersphere naturally appears
when a d-dimensional normal random vector z with E(z) =0
is conditioned on ||z|| = 1 [26]. One of the main challenges
when dealing with the Bingham distribution is the calculation
of its normalization constant, so we discuss this issue in some
detail.

4.1 Probability Density Function

As a consequence of the motivation above, it can be seen that
the Bingham probability density function (pdf) looks exactly
like its Gaussian counterpart except for the normalization
constant. Furthermore, the parameter matrix of the Bingham
distribution appearing in the exponential (which is the inverse
covariance matrix in the Gaussian case) is usually decomposed
into an orthogonal and a diagonal matrix, which yields an
intuitive interpretation of the matrices. This results in the
following definition.

Definition 1. Let Sy 1 = {z € R? : ||z|| = 1} C R? be the
unit hypersphere in R%. The probability density function (pdf)

f : Sd,1 — R (1)
of a Bingham distribution [5] is given by
1
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Fig. 2: Bingham probability density function with M =
Io.o for different values of Z = diag(z,0) and z =
(cos(6),sin(6))T. These values for z; correspond to standard
deviations of approximately 6°, 16°, and 36°, respectively.

where M € R is an orthogonal matrix' describing the
orientation, Z. = diag(z1, . ..24-1,0) € R ywith 21 < -+ - <
2g—1 < 0 is the concentration matrix, and F' is a normalization
constant.

As Bingham showed [5], adding a multiple of the identity
matrix I;x4 to Z does not change the distribution. Thus, we
conveniently force the last entry of Z to be zero. Because it is
possible to swap columns of M and the according diagonal
entries in Z without changing the distribution, we can enforce
z1 <o < zg-ae

The probability density function is antipodally symmetric,
ie., f(z) = f(—=z) holds for all x € S;_;. Consequently,
the Bingham distribution is invariant to rotations by 180°.
Examples for two dimensions (d = 2) are shown in Fig. 1
and Fig. 2. Examples for three dimensions (d = 3) are shown
in Fig. 3. The relation of the Bingham distribution to certain
other distributions is discussed the appendix.

It deserves to mention that some authors use slightly different
parameterizations of the Bingham distribution. In particular, the
rightmost column of M is sometimes omitted [11], because it
is, up to sign, uniquely determined by being a unit vector that is
orthogonal to the other columns of M. As a result of antipodal
symmetry, the sign can safely be ignored. Still, we prefer to
include the entire matrix IM because this representation allows
us to obtain the mode of the distribution very easily by taking
the last column of M.

4.2 Normalization Constant
The normalization constant of the Bingham distribution is

difficult to calculate, which constitutes one of the most signifi-
cant challenges when dealing with the Bingham distribution.

! An orthogonal matrix M fulfills the equation MM7T = MT M = Iy 4.



Fig. 3: Bingham pdf with M = I35 for values of Z = diag(—1,—1,0), Z = diag(—5,—1,0), and Z = diag(—50,
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F= exp(gTMZMTg)dg

Sa—1

= / exp(z’ Zz)dz
Sa—1
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the normalization constant does not depend on M. It can be
calculated with the help of the hypergeometric function of a
matrix argument [14], [23], [40] according to

1d
F = 1l 1P ==, 2
ISd 1‘ 1 1(2727 > ’ (5)
where
2.,n_n/2
|Sd71|—m (6)

is the surface area of the d-sphere and 1 Fi(-,,-) is the hyper-
geometric function of matrix argument. In the d-dimensional
case, this reduces to

-2’1 0 0
1d |0 0
F=|Sq_1]|-1F1 59 ) (N
o zg—1 O
0 ... 0 0
1 d -Zl O
:|Sd71|’1F1 5757 : : ) (8)
| 0 Zd—1

so it is sufficient to compute the hypergeometric function a
diagonal matrix of size (d — 1) x (d — 1). If d = 2, this
is a hypergeometric function of a scalar argument, which is
described in [1]. We will later show how to further reduce this
to a Bessel function for d = 2.

A number of algorithms for computing the hypergeometric
function have been proposed, for example saddle point-
approximations [26], a series of Jack functions [23], and
holonomic gradient descent [24]. Glover has suggested the
formula [11, (8)]

SN | Fi VTR e
F=2ym ) o >, —
ag_1=0 I’ (5 + Zi:l ai)

)

041:0

~1,0).

which should only be evaluated for positive z1,...,24—1 to
avoid a numerically unstable alternating series’>. Because of
the computational complexity involved, libbingham [9]
provides a precomputed lookup table and linear interpolation is
used at runtime to obtain an approximate value. The technique
of precomputed tables has previously been used by Mardia et
al. for the maximum likelihood estimate, which involves the
normalization constant [38].

To allow for online calculation of the normalization constant,
we use Bessel functions for d = 2 and the saddle-point
approximation by Kume et al. [26] for d > 2. The derivatives of
the normalization constant, which are required for the maximum
likelihood estimation procedure, can be calculated according
to [27].

5. OPERATIONS ON THE BINGHAM DISTRIBUTION

In this section, we derive the formulas for multiplication of
two Bingham probability density functions. Furthermore, we
will present a method for computing the composition of two
Bingham-distributed random variables, which is analogous to
the addition of real random variables.

5.1 Multiplication

For two given Bingham densities, we want to obtain
their product. This product is used for Bayesian inference
involving Bingham densities. The result presented below yields
a convenient way to calculate the product of Bingham densities.

Lemma 1. Bingham densities are closed under multiplication
with renormalization.

Proof. Consider two Bingham densities

fi(z) = Fi - exp(z"™M, Z; M z) (10)
and

fo(z) = Fy - exp(z’ My Zo M z) . (11)
Then
fi(z) - folz) = FuFy - exp(a’ (MiZiM + MpZoMj )z)

=:C

x F-exp(z’ MZM”z) (12)

2This can easily be achieved by adding a multiple of the identity matrix to
the concentration matrix Z.



with I as the new normalization constant after renormalization,
M are the unit eigenvectors of C, D has the eigenvalues
of C on the diagonal (sorted in ascending order) and Z =
D — Dgglixq where Dgy refers to the bottom right entry of
D, i.e., the largest eigenvalue. O

5.2 Estimation of Bingham Distribution Parameters

Estimating parameters for the Bingham distribution is not
only motivated by the need to estimate distribution parameters
of the process noise. It also plays a crucial role in the prediction
process when computing the composition of two Bingham
random vectors and reapproximating a Bingham distribution.
This procedure is based on matching covariance matrices. Be
aware that although the Bingham distribution is only defined on
Saq—1, we can still compute the covariance matrix of a Bingham-
distributed random vector z € S;_; according to S = E(z-27)
in R?. Thus, we will present both the computation of the
covariance matrix of a Bingham distributed random vector and
the computation of parameters for a Bingham distribution with
a given covariance (which could correspond to an arbitrary
distribution on the hypersphere).

The maximum-likelihood estimate for the parameters (M, Z)
of a Bingham distribution can be obtained from given or
empirical moments (in the case of given samples) as described
in [5]. M can be obtained as the matrix of eigenvectors of the
covariance S with eigenvalues w; < --- < wy. In other words,
M can be found as the eigendecomposition of

S =M - diag(wy, . ..,wq) - MT . (13)

To calculate Z, the equations
a%ilFl (3,1,diag(z1, ..., za))
1F1(%, 1,diag(z1,...,24))

have to be solved under the constraint z; = 0, which is
justified by the argumentation above and used to simplify the
computation. The actual computation is performed numerically.
In our case, the £solve routine from Matlab was used, which
utilizes a trust region method for solving nonlinear equations.

Conversely, for a given Bingham(M, Z)-distributed random
vector £ € Sy_1, the covariance matrix can be calculated
according to

E(& QT) =M- dia‘g(o‘)lu v ,(/Jd) : MT

. 1 0F 1 0F

Thus, the underlying distribution parameters of a Bingham
distributed random vector are uniquely defined by its covariance
matrix and vice versa. However, it is important to note that this
covariance matrix is usually not the same as the covariance
matrix of a Gaussian random vector which was conditioned to
one in order to obtain the Bingham distribution.

i=1,...,d (14)

= Wi,

(15)
) -MT . (16)

Remark 1. For d = 2, there is an interesting relation of the
covariance matrix to the circular (or trigonometric) moments

2m
My, = / exp(inz) f(z)dr € C, i* = -1 (17)
0

that are commonly used for circular distributions. A Bingham
distribution with M = Iyxo and z = [cos(f),sin(0)]T has

S_ﬁ; v?zl_ [E(g%) E(gg)] (18)
{E(Cozw)) E@n?(eyﬂ : (19)

ie, wi = Remy and wy = Im meo.

5.3 Composition

Now, we want to derive the composition of Bingham
distributed random vectors, which is the directional analogue
to addition of random vectors in a linear space. Thus, the
density of the random vector resulting from this operation is
the directional analogue to the convolution in linear space. First,
we define a composition of individual points on the hypersphere
Saq—1, which we then use to derive the composition of Bingham

distributed random vectors. We consider a composition function
®:Sq-1 % 841 = Sa—1, (20)

where & has to be compatible with 180° degree symmetry,
ie.,

r®y==+((—z) Dy) (21)
=+ & (-y)) (22)
- +((-2) & () e3)

for all x,y € S4—1. Furthermore, we require the quotient
(S4—1/{%1},®) to have an algebraic group structure. This
guarantees associativity, the existence of an identity element,
and the existence of inverse elements.

Remark 2. It has been shown that the only hyperspheres
admitting a topological group structure are Sy, S1, and Ss [39].
Because Sy only consists of two elements, S| and S3 (i.e.,
d = 2 and d = 4) are the only two relevant hyperspheres.
This structure is necessary to obtain a suitable composition
operation.

For this reason, we only consider the cases d = 2 and d = 4
from now on. These two cases are of practical interest as they
conveniently allow the representation of two-dimensional axes
and three-dimensional orientations via quaternions.

5.3.1 Two-dimensional case: For d = 2, we interpret S; C
R? as elements in C of unit length, where the first dimension
is the real part and the second dimension the imaginary part. In
this interpretation, the Bingham distributions can be understood
as a distribution on a subset of the complex plane, namely the
unit circle.

Definition 2. For d = 2, the composition function @ is defined
to be complex multiplication, i.e.,

x1 ® Y| _ |T1y1 — X202 (24)
T2 Y2 T1Y2 + Taln



analogous to

(x1 + ix2) - (11 + 1y2) =(z1y1 — T2Y2)

+i(z1y2 + 2211) . (25)

Since we only consider unit vectors, the composition & is
equivalent to adding the angles of both complex numbers when
they are represented in polar form. The identity element is +1
and the inverse element for (21, x5)7 is the complex conjugate
:|:("E1, —(EQ)T.

Unfortunately, the Bingham distribution is not closed under
this kind of composition. That is, the resulting random vector
is no longer Bingham distributed (see Lemma 3). Thus, we
propose a technique to approximate the composed random
vector with a Bingham distribution. The composition of two
Bingham distributions fa and fg is calculated by considering
the composition of their covariance matrices A, B and esti-
mating the parameters of fc based on the resulting covariance
matrix. Composition of covariance matrices can be derived from
the composition of random vectors. Note that since covariance
matrices are always symmetric, we can ignore the bottom left
entry in our notation and mark it with an asterisk.

Lemma 2. Let fao and fg be Bingham distributions with
covariance matrices

A— [au a12} and B — [bn b12} ’
* b22

* ag9 (26)

respectively. Let z,y € S1 C R? be independent random vec-
tors distributed according to fa and fg. Then the covariance

C= {C“ C”] = Cov(z @ y) 27)
* C22 -
of the composition is given by
c11 =a11bi1 — 2a12b12 + a22b22 , (28)
c12 =a11b12 — a12baz + a12b11 — az2bi2 , (29)
Co2 =a11b22 + 2a12b12 + ag2bi1 . (30)
Proof. See Appendix E. O

Based on C, the maximum likelihood estimate is used
to obtain the parameters M and Z of the uniquely defined
Bingham distribution with covariance C as described above.
This computation can be done in an efficient way, even though
the solution of the equation involving the hypergeometric
function is not given in closed form. This does not present
a limitation to the proposed algorithm, because there are
many efficient ways for the computation of the confluent
hypergeometric function of a scalar argument [34], [41].

5.3.2 Four-dimensional case: In the four-dimensional case
(d = 4), we interpret S3 C R* as unit quaternions in H [25].
A quaternion q = [q1, ¢2, g3, q4]” consists of the real part ¢
and imaginary parts ga, g3, q4. It is written as

a=q+q@i+q@jit+auk, (3D

where i2 = j? = k? = ijk = —1 are the imaginary units. A
rotation in SO(3) with rotation axis [v1,vq,v3]T € Sz and
rotation angle ¢ € [0, 27) can be represented as the quaternion
q =cos(¢/2) +sin(¢/2)(vii+vej+uvsk)  (32)
and applied to a vector w = [wy, ws, w3] € R3 according to

wl = q(0 4w i+ wyj+wsk)q . (33)

Here, = ¢1 — q27 — q3j — q4k denotes the conjugate of q
and w"°! quaternion containing the rotated vector encoded as
the factors of the quaternion basis elements i, j, and k.

Definition 3. For d = 4, the composition function @ is defined
to be quaternion multiplication, i.e.,

T Y1 T1Y1 — T2Yy2 — T3Y3 — Tal4
_|_ —
T2 @ Yo | _ |T1Yy2 + T2y1 + T3ys — T4Ys3 (34
T3 Y3 T1Ys — ToYs + T3Y1 + Tay2
Ty Ya T1Y4 + T2Ys — T3Y2 + Tay1

sometimes also referred to as Hamilton product.

This definition corresponds to the composition of rotations.
The identity element is £[1,0,0,0]7 and the inverse element
is given by the quaternion conjugate as given above.

Lemma 3. For all nontrivial hyperspheres that allow a
topological group structure (d = 2 and d = 4, see Remark 2),
the Bingham distribution is not closed under composition of
random variables.

Proof. We prove this Lemma by computing the true distribution
of the (Hamilton-) product @ of two Bingham distributed
random vectors z ~ f,(-) and y ~ f,(-) with respective
parameter matrices M, M, ij and Z,. The true density
f () of x @y can be expressed in terms of the densities of x
and y by

f(2) :/ folz®a™)fy(a)da . (35)
Sa-1

Inversion of unit quaternions and complex numbers of unit

length can both be obtained by conjugation. Furthermore,

complex numbers and quaternions can both be represented

by matrices. This can be used to construct a matrix Q, such

that z ® a~! = Q.a. Thus, we obtain

f(z) = g f2(Qza) fy(a)da (36)
x / exp(a’ QI M, Z,M] Q.a
Sa—1
+a"M,Z,M! a)da (37)

oc/ exp(a’ (QTM,Z. M Q. + MyZyMg)Q)dQ )
Sa—1
Computation of the integral yields a rescaled hypergeometric
function of matrix argument. Therefore, the random variable
z @ y does not follow a Bingham distribution. [



Lemma 4. Let fao and fg be Bingham distributions with
covariance matrices

ai1 aiz2 Ga13 ai4 bi1 b2 b1z by
A_ | * @2 axs au| g | baa b2z boy

¥ o+ asz as4|’ * ok bgg b3yl ]

* * * 44 * * * bay

respectively. Let z,y € S3 C R* be independent random vec-
tors distributed according to fa and fg. Then the covariance
matrix

€11 Ci2 C13 Ci4
_ | ¥ C22 C23 Cog| _
C=1, B Cov(z @ y) (38)
* * * Ca4
of the composition is given by

Proof. Analogous to Lemma 2. The complete formula for ¢;;
is given in [11, A.9.2]. [

6. FILTER IMPLEMENTATION

The techniques presented in the preceding section can be
applied to derive a recursive filter based on the Bingham
distribution. The system model is given by

L1 — Ly, D w, , (40)

where w,;, is Bingham-distributed noise. The measurement
model is given by

2 =2 DYy, 41)

where v, is Bingham-distributed noise and z,, is an uncertain
Bingham-distributed system state. Intuitively, this means that
both system and measurement model are the identity disturbed
by Bingham-distributed noise. Note that the modes of the
distributions of w,, and v, can be chosen to include a constant
offset. This can be thought of as a directional equivalent to non-
zero noise in the linear setting. For example, the mode of w,
can be chosen such that it represents a known angular velocity
or a given control input. Alternatively, to avoid dealing with
nonzero-mean noise distributions, a rotation may be applied to
z,;, first and zero-mean noise added subsequently.

The predicted and estimated distributions at time k are
described by their parameter matrices (M}, Z7) and (M, Z ),
respectively. The noise distributions at time k are described by
(Mp,Zp) and (M}, Z}).

Algorithm 1: Algorithm for prediction step.
Input: estimate M7, Z7, noise M}/, Z’

Output: prediction M}, 11 zy 41
/* obtain covariance matrices A,B */
. 1 OF 1
A(-Mz'dlag(Faizl7...,Fazd) (Me)
: 1 OF 1
B« M}CU 'dlag (faiz]”fdizd) (Mw)
/* obtain C with to Lemma 2 or 4 *x/
cij— E(oy)-(2dy);), 4i=1,....d
C = (cij)ijs
/* obtain Mﬁ_H,Zi_H based on C */

M}, ,,Z} , + MLE(C);

6.1 Prediction Step

The prediction can be calculated with the Chapman-
Kolmogorov-equation

To(@pi1) (42)
/s f(@ppqlzg) fe(zy)day, (43)
:/s . f $k+1awk\xk)dwkfe($k)d$k (44)
:/s - f xk—&-l’|wk7xk)fw(wk)dwkfp(xk)dxk (45)

(2, ® 2poy1)) fo(wy, ) dwy, fo (2 )dz,

] -

:/S fw@];l © 2y ) fe(zy)day, (46)
d—1
This yields

(M}, Zy ) = composition((Mj, Z), (M, Z))) , (47)

which uses the previously introduced composition operation to
disturb the estimate with the system noise.

6.2 Measurement Update

Given a measurement Zz,, we can calculate the updated
density f of z; given z;, from the density f, of v, and the prior
density f, of x;. This is performed using the transformation
theorem for densities and Bayes’ rule

fla) < fola ®2)- fola) .

First, we make use of the fact that negation corresponds to
conjugation for quaternions and complex numbers of unit length.
Thus, we have ' @ 2 = D(2~' @ a) with D = diag(1, 1)
for d = 2 and D = diag(1,—1,—1,—1). As in our proof of
Lemma 7, we can use a matrix representation Q;-1 of 2_1
such that 2_1 @ a = Q;-1a. Thus, we obtain

fola™' ®2) = fo(D-Qs1a) .

(48)

(49)



Algorithm 2: Algorithm for update step.

Input: prediction MY, Z7, noise M}, Z}, measurement
z
Zp

Output: estimate My, Z7

/* rotate noise according to
measurement */

M+ 2o (DM});

/* multiply with prior distribution */

(M, Zi;) < multiply((M, Z7)), (M, Z7));

This yields

fo(D-Qz-1-a) (50)
xexp(a” QL DM} Z{(M})" DQ;1a)  (51)
= exp(a’ Q: DM Z;(M;)" D Q;1a) - (52)

The last identity is due to D7 = D and the fact that the
transpose of the usual matrix representations of complex
numbers and quaternions corresponds to the representation
of their conjugates.

Finally, the parameters of the resulting Bingham distribution
are obtained by

(M5, Z;) = multiply((M, Z§), (M}, Z)) ~ (53)
with M = (2 @ (DM})), where @ is evaluated for each
column of D MY and “multiply” denotes the procedure outlined
in Sec. 5-A. This operation can be performed solely on the
Bingham parameters and does not involve the calculation of
normalization constants (see Algorithm 2).

7. EVALUATION

The proposed filter was evaluated in simulations for both
the 2D and 4D cases. In this section, all angles are given in
radians unless specified differently.

For comparison, we implemented modified Kalman filters
with two- and four-dimensional state vectors [19]. In order to
deal with axial estimates, we introduce two modifications:

1) We mirror the estimate z <— —Z if the angle between
prediction and measurement /(z},%) > /2.

2) We normalize the estimate xj, after each update step
.€ zy
L Mgl

It should be noted that in two-dimensional scenarios, a

comparison to a Kalman filter with a scalar state is also possible.

We previously performed this simulation in [32] and showed
that the Bingham filter is superior to Kalman filter with scalar
state in the considered scenario.

7.1 Two-Dimensional Case

In our example, we consider the estimation of an axis in
robotics. This could be the axis of a symmetric rotor blade

-2

-2 -1 0 1 2

Fig. 6: The Bingham density with parameters M7, Z7 (on the
circle) and a Gaussian (in the plane) fitted to one of the modes
with the mean located at the mode and covariance computed
according to (57).

or any robotic joint with 180° symmetry. We use the initial
estimate with mode (0,1)7

1 0 -1 0
e __ e _
the system noise with mode (1,0)7
w (01 w (200 0
w0 ) me () e
and the measurement noise with mode (1,0)%
. (01 . (-2 0

The true initial state is given by (1,0)7, i.e., the initial estimate
with mode (0,1)7" is very poor.

To calculate the covariance matrices for the Kalman filter
we fit a Gaussian to one of the two Bingham modes by means
of numerical integration, i.e.,

QA +7/2
c=/ B f([cos(¢),sin(¢)]") (57)
(cos(d) —my)?  (cos(d) — ma)(sin(@) — m)
| { ] (sin(6) — ma)? 49

where (m1,m2)T is a mode of the Bingham distribution and
Qv = atan2(ms, mq). The original Bingham distribution and
the resulting Gaussian are illustrated in Fig. 6. We obtain the

parameters

e [38x107" 0

@ = 0 1.5 x 1071 (>8)
w  [47x1076 0 |

O = 0 2.5 x1073] (>9)
. [8.8x1072 0 |

G = 0 2.8 x 107! ° (60)

which is equivalent to angular standard deviations of 43.9° for
the first time step, 2.9° for the system noise and 36.3° for the
measurement noise.



4D, Gaussian noise

RMSE (in Radians)
o o 9o I
A o ® e i

o
N

2D, Bingham noise 2D, Gaussian noise 4D, Bingham noise
: 1 + 0.12 + 000 +
. _ o1 _ o b
€08 £ o1 ! £ oos B
8 g o000 ‘ 8 |
i 00 € 006 g 007
| + % + 0 0.07 [
- 2 04 N 2 0.06
4 X 506 | 4 | -
.. 1 - e
=2 = | = = -+ -

Kalman Bingham

2D, Bingham noise

Kalman
Bingham

Kalman Bingham

Kalman Bingham

Fig. 4: RMSE from 100 Monte Carlo runs.

2D, Gaussian noise

4
®

o
o

Kalman
Bingham

4D, Bingham noise

I
=)
@

o
9
&

Kalman Bingham

4D, Gaussian noise
0.08

Kalman
Bingham

o
o
5

o
o

angular error (in radians)
angular error (in radians)
o
=

0.6
0.4
0.2

80 100 0 20 40 60 80 100
time step

0 20 40 60
time step

Fig. 5: Average error over time

7.2 Four-Dimensional Case

For the quaternion case, we use the initial estimate with
mode (0,0,0,1)7

Mg = Lyxa, Z§=diag(—1,—-1,-1,0), (61)
the system noise with mode (1,0,0,0)”
0 0 01
wfon o]
1 0 0 O
Z} = diag(—200, —200,—2,0) , (63)
and the measurement noise with mode (1,0, 0,0)7
0 0 01
(2000
1 0 0 O
Z7 = diag(—500, —500, —500,0) . (65)

The true initial state is (0,1,0,0)7, i.e., the initial estimate
with mode (0,0,0,1)7 is very poor. It should be noted that
the system noise is not isotropic, because the uncertainty is

significantly higher in the third dimension than in the first two.

We converted the Bingham noise parameters to Gaussians
analogous to the two-dimensional case.

7.3 Results

We simulate the system for a duration of k,,x = 100 time
steps. For evaluation, we consider the angular RMSE given by

(66)

0.07

o
=3
>

o
=3
&

angular error (in radians)
angular error (in radians)

20 40 60 80 100 0 20 40 60 80 100
time step time step

from 100 Monte Carlo runs.

with angular error

er = min (Az(ggue, mode(MY)), (67)

T — L (a2, mode(MZ)) (68)
at time step k. Obviously, 0 < e, < 7 holds, which is
consistent with our assumption of 180° symmetry. This error
measure can be used in the two- and the four-dimensional
setting. As we have shown in [8], the angle between two
quaternions in four-dimensional space is proportional to the
angle of the corresponding rotation between the two orientations
in three dimensions, so e is a reasonable measure for
quaternions.

The presented results are based on 100 Monte Carlo runs.
Even though our filter is computationally more demanding
than a Kalman filter, it is still fast enough for real-time
applications. On a standard laptop with an Intel Core 17-2640M
CPU, our non-optimized implementation in MATLAB needs
approximately 8 ms for one time step (prediction and update)
in the two-dimensional case. In the four-dimensional case,
we implemented the hypergeometric function in C, but the
maximum likelihood estimation is written in MATLAB. The
calculations fore one time step require 13 ms on our laptop.

We consider two different types of noise, Bingham and
Gaussian. Even though Bingham distributed noise may be a
more realistic assumption in a circular setting, we do not want
to give the proposed filter an unfair advantage by comparing
it to a filter with an incorrect noise assumption. In the cases
of Gaussian noise, we obtain the parameters of the Gaussian
as described in (57) and convert the resulting Gaussians back
to Bingham distributions to account for any information that
was lost in the conversion from Bingham to Gaussian.



The results for all considered scenarios are depicted in Fig. 4
and Fig. 5. It can be seen that the proposed filter outperforms
the Kalman filter in all considered scenarios. Particularly, it
outperforms the Kalman filter even if Gaussian noise is used.
This is due to the fact that projecting the Gaussian noise to the
unit sphere does not yield a Gaussian distribution, which makes
the Kalman filter suboptimal. Furthermore, the Kalman filter
does not consider the nonlinearity of the underlying domain.
As expected, the advantage of using the Bingham filter is larger
if the noise is following a Bingham distribution.

8. CONCLUSION

We have presented a recursive filter based on the Bingham
distribution. It can be applied to angular estimation in the
plane with 180° symmetry and to quaternion-based estimation
of orientation of objects in three-dimensional space. Thus, it
is relevant for a wide area of applications, particularly when
uncertainties occur, for example as a result of cheap sensors
or very limited prior knowledge.

We have evaluated the proposed approaches in very challeng-
ing settings involving large non-isotropic noise. Our simulations
have shown the superiority of the presented approach compared
to the solution based on an adapted Kalman filter for both
the circular and the quaternion case. This is true no matter if
the noise is distributed according to a Bingham or a Gaussian
distribution. Furthermore, we have shown that the proposed
algorithms are fast enough on a typical laptop to be used in
real-time applications.

Open challenges include an efficient estimator of the Bing-
ham parameters based on available data. This makes an efficient
evaluation of the confluent hypergeometric function necessary.
Furthermore, extensions to nonlinear measurement equations
and the group of rigid body motions SE(3) may be of interest.
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APPENDIX A
RELATION TO GAUSSIAN DISTRIBUTION
The Bingham distribution is closely related to the widely
used Gaussian distribution.

Definition 4. The pdf of a multivariate Gaussian distribution
in R? is given by

fC () = !

v (2m)d det ¢

with mean p € R? and positive definite covariance 3 €

1 -
Xp (—2(:[; -p)'E (- u))
Rdx d.
If we require p = 0 and restrict z to the unit hypersphere,
ie., ||z|]| = 1, we have

fC(x) =

T

1 T 1 —1) )
S — P 6
( ) exp( < 3 x|, (69)

Fig. 7: A two-dimensional Gaussian distribution, which is
restricted to the unit circle to obtain a two-dimensional Bingham
distribution.

which is an unnormalized Bingham distribution with
MZMT = 7%2—1_ Conversely, any Bingham distribution
is a restricted Gaussian distribution with ¥ = (—2MZM7*)~!
if MZMT7 is negative definite. This condition can always
be fulfilled by adding a multiple of the identity matrix I ;.4
to Z. Modifying Z in this way yields a different Gaussian
distribution, but the values on the unit hypersphere stay the
same, i.e., the Bingham distribution does not change. A
graphical illustration of the relation between a Gaussian density
and the corresponding Bingham resulting from conditioning
the original Gaussian random vector to unit length is given in
Fig. 7.

Due to local linear structure of the underlying manifold, each
mode of the Bingham distribution defined on this manifold
is very similar to a Gaussian of dimension d — 1 if and only
if the uncertainty is small. This can be seen in Fig. 8, which
shows the Kullback-Leibler divergence

/OTr f([cos(0),sin(6)]") log (f([COS(9), sin(6)]7)

€0, p,0)

between one mode of a Bingham pdf for d = 2 and a
corresponding one-dimensional Gaussian pdf on the semicircle.

) do (70)

APPENDIX B
RELATION TO VON MISES DISTRIBUTION

The Bingham distribution for d = 2 is closely related to the
von Mises distribution. We can exploit this fact at some points
in this paper.

Definition 5. A von Mises distribution [15] is given by the
probability density function

™5 s ) (71)

1
= 5o () exp(k cos(¢ — p))
for ¢ € [0,27), location parameter 1 € [0,27) and concen-
tration parameter k > 0, where Iy(k) is the modified Bessel
function [1] of order 0.
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Fig. 8: Kullback-Leibler divergence on the interval [0, ]
between a Bingham pdf with M = Iy, Z = diag(z1,0)
and a Gaussian pdf with equal mode and standard deviation.
For small uncertainties (27 < —15, which corresponds to a
standard deviation of about 11°), the Gaussian and Bingham
distributions are almost indistinguishable. However, for large
uncertainties, the Gaussian approximation becomes quite poor.

Based on this definition, we can show an interesting relation
between Bingham and von Mises distributions [35].

Lemma 5. For the circular case, every Bingham density is
equal to a von Mises density rescaled to [0,7) and repeated
on [, 2m).

Proof. We can reparameterize a Bingham distribution with
d = 2 by substituting x = [cos(), sin(#)]? and

Cf)s(”)} . Z= [0 8] (72)

sin(v)

— S.
M — { in(v)
cos(v)
to attain the von Mises distribution. With

— cos(v) sin(v)
cos?(v)

sin?(v)

MZM" =z, [_ cos(v) sin(v)

] o (73)

this yields the pdf

- eXp ([cos(8), sin(0)]MZM™ [cos (), sin(6)]")
%exp (zl cos () sin(v) — sin(0) cos(u))Q) (74
- L oxp (Zl sin? ) (75)

according to sin(a — b) = sin(a) cos(b) — cos(a) sin(b). Now
we apply sin®(a) = 3(1 — cos(2a)) and get

1

f(o) = 7 XP (%1) exp (—%1 cos(26 — 21/)) ,

which exactly matches a von Mises distribution with ¢ =
20,1 = 2v, and k = —Z that has been repeated twice, i.e.,

2
6 € [0,27) and ¢ € [0, 4m). O

(76)

This property can be exploited to derive a formula for the
normalization constant of the Bingham distribution.

Lemma 6. For d = 2, the normalization constant is given by

F=2r-1I, (%1) exp (%) 77)
with derivatives
Lresen(3) (1 (2)rn(3)
iF = Texp <Zl i 22)
0za 2
((52)5(52) o

Proof. In order to consider the derivative with respect to zs,
we first consider a Bingham density with arbitrary zo, which

yields
exp (zTM a0 M7z
3 O 29 3
exp <xTM [216'22 8] M7z + 2, -xTMMTx>

_exp(z2) T — 22 0] o7
— exp< M{ 0 O]Mx .

flz) = (80)

s e

1)

We use the formula for the normalization constant of a von
Mises distribution to obtain

1
F 2l (2522)
Solving this equation for F and substituting zo = 0 shows (77).
The derivatives are calculated with [1, eq. 9.6.27]. O]
APPENDIX C

RELATION TO VON MISES-FISHER DISTRIBUTION

The von Mises-Fisher distribution is a hyperspherical gener-
alization of the von Mises distribution.

Definition 6. A von Mises-Fisher distribution [7] is given by
the pdf

™M (25 p, k) = Ca(k) exp(kp” z) (83)

with
d/2-1
(2m)P/2 1, 51 (K)

for x € Sq_1, location parameter p € Sq—1 and scalar
concentration parameter > 0, where I,,(k) is the modified
Bessel function [1] of order n.

Ca(k) = (84)

Unlike the Bingham distribution, the von Mises-Fisher
distribution is unimodal and not antipodally symmetric, but
radially symmetric around the axis of ;. We note that by use
of hyperspherical coordinates, we can reformulate the pdf of
the von Mises-Fisher distribution as

SYMECR) £ [0,7] — RY, (85)
F™ME(¢ k) = Ca(k) exp(rcos(¢)) sin® ' (¢) ,  (86)
where ¢ = Z(p, z) . 87



The term sin?~!(¢) arises as a volume-correcting term when
the substitution rule is applied. Using this definition, we
can show an interesting relation between certain Bingham
distributions and the von Mises-Fisher distribution.

Lemma 7. For a Bingham distribution with z1 = - -+ = 241
with pdf f(-), we have the relation

FYME (05 5) = (2c08(0))7 - f(6) (88)
to the von Mises-Fisher distribution.
Proof. We consider Z = diag(zy...,21,0) and M = [... |p].
From the Bingham pdf, we obtain
1
flx) =% exp(zT MZM™ ) (89)
1
=% exp(z’ M diag(z; ..., 21,0)M”2) (90)
1
=7 exp(z” M diag(0...,0, —z;)M”
+ 212" MM z) 1)
_exp(z1)

=7 exp(—z12” M diag(0...,0,1)M”z) . (92)

We use the fact that the last column of M contains the mode
4 and obtain

flz) =—F exp(—z1z” pp” ) (93)
:exf;(,zl) exp(—z1(p"z)%) (94)
_OP(2) o a (cos(Z(z, 1)) | (95)

F e

By using the trigonometric identity cos?(x) = (1+cos(2x))/2,
we obtain

flx) :explg’%) exp (7% cos(24(z, E))> .

Substitution of spherical coordinates as above yields the pdf
f:[0,5] = RY,

(96)

£(0) = expﬁ) exp (—%003(20)) sind=1(9) . (97
On the other hand, the von Mises-Fisher pdf can be stated as
FYME (@3 5) =Ca (k) exp (s cos(¢)) sin 1 (¢) . (98)

We set kK = —%1 and ¢ = 20, which yields
FYME (9. 1) (99)
—Cy (—Z—;) exp (—— cos(29)) sind=1(20)  (100)
B S0 = Geos0) - 50). a0
O

This fact can be used to simplify the maximum likelihood
estimation when the underlying samples are (or can be assumed
to be) generated by an isotropic Bingham distribution, i.e.,

when the corresponding density is circularly symmetric around
the modes If the samples are reweighted by a factor of
(2cos(6))?~! and their angle around the mean is doubled, a von
Mises-Fisher maximum likelihood estimate can be performed
to obtain x and subsequently z;. This can be advantageous,
because the maximum likelihood estimate for a von Mises-
Fisher distribution is computationally less demanding than for
the Bingham distribution [43].

APPENDIX D
RELATION TO KENT DISTRIBUTION

Furthermore, it should be noted that the d-dimensional
Bingham distribution is a special case of the d-dimensional
Kent distribution [20]. The Kent distribution is also commonly
referred to as the Fisher-Bingham distribution because it is a
generalization of both the von Mises-Fisher and the Bingham
distribution.

Definition 7. The pdf of the Kent distribution is given by
d

fz) xexp(rplz+) Bi(a]2)%)

Jj=2

(102)

where x € Sq_1, and p € Sy_1 is the location parameter, r >
0 is the concentration around p, the directions Vor--20g €
Sq_1 are orthogonal and have corresponding concentrations
B> >Ba R

It can be seen that for x = 0, this yields a Bingham
distribution. The vectors Yor 1Yy correspond to the M matrix
and the coefficients s, . . ., B4 correspond to the diagonal of the
Z matrix. This fact allows the application of methods developed
for the Kent distribution such as [24], [26] in conjunction with
the Bingham distribution. For g5 = --- = 84 = 0, the Kent
distribution reduces to a von Mises-Fisher distribution.

APPENDIX E
PROOF OF LEMMA 2.

Proof. The covariance of the composition

C=Cov(z®y)

— Cov <<x1y1 - x2y2)>
T1Y2 + Tay1
_ (Var(x1y1 —x2y2) Cov(z1y1 — Tay2, T1Y2 + 9623/1))

* Var(z1y2 + 22y1)

can be obtained by calculating the matrix entries individually.
For the first entry we get

(103)

(104)

c11 = Var(z1y1 — xays) (105)
=E((z1y1 — 7212)°) — (B(z151 — 7212))° (106)
=E(ziy; — 22191222 + 2393)

— (E(z191) — E(x2y2))? (107)

=E(21) E(y}) — 2E(z122) E(y1y2) + E(23) E(y3)

(108)
— (E(z1) E(y1) — E(z2) E(y2))? (109)

0 0 0 0
=a11b11 — 2a12b12 + az2b22 . (110)



We use independence of z and y in (107), linearity of the
expectation value in (108), and symmetry of the Bingham in
(109). Analogously we calculate

co2 = Var(z1y2 — x2y1) (111)
=E((z192 — 22y1)?) — (E(z192 — 2211))? (112)
=EB(z1y3 — 2z15122y2 + 23Y7)

— (B(z1y2) — E(z211))? (113)

=E(2) E(y3) — 2E(z122) E(y1y2) + E(23) E(y7)

= (B(21) E(y2) — B(22) E(11))? (114)
——
0 0 0 0
=a11b22 — 2a12b12 + az2b11 . (115)
The off-diagonal entry can be calculated similarly
c12 = Cov(z1y1 — T2y2, T1Y2 + T2Y1) (116)
=E((z1y1 — z2y2) - (2192 + 2291))
— E(z1y1 — 72y2) - E(w1y2 + 2291) (117)
=E(2ly192 — 112293 + z122y7 — 230152)
— (E(21) E(y1) — E(22) E(y2))
- (E(z1) E(y2) + E(x2) E(y1)) (118)
=a11b12 — a12b22 + 12011 — a22b12 . (119)

Because C is a symmetrical matrix, this concludes the proof
of Lemma 2. O
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