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Abstract— This paper presents a solution for the extrinsic and
intrinsic calibration of visual-inertial sensor systems. Calibration
is formulated as a joint state and parameter estimation problem
of a continuous-time system with discrete-time measurements.
A maximum-likelihood estimator is derived to estimate the
transform between cameras and inertial sensors, temporal
alignment, and inertial sensor intrinsic parameters, such as scale
factors, axes misalignment, and sensor noise characteristics. The
estimator is simple to implement, consistent, and asymptotically
attains the Cramér–Rao lower bound. In contrast to the existing
methods, it requires no tuning parameters. Detailed results
from repeated calibration experiments with a camera-inertial
measurement unit system are reported and compared with the
results obtained from a modern, parametric method. We reach
a precision of <1 mm in extrinsic translation, 1 mrad in
orientation, and 10 μs in time shift—within a calibration window
of 20 s.

Index Terms— Calibration, inertial measurement units,
cameras, maximum likelihood.

I. INTRODUCTION

V ISUAL-INERTIAL sensor units are a popular choice for
localisation and mapping systems since the combination

of these complementary sensing modalities leads to increased
robustness and accuracy. However, calibration is required
to optimally leverage the measurements of all sensors.
Exact knowledge of the transform between the sensors is
vital [1]. Most precise systems also align the sensor data
temporally to compensate for camera exposure time and
inertial measurement unit (IMU) intrinsic delays [2].

While most visual-inertial localisation and mapping
frameworks employ an intrinsic calibration for the camera,
intrinsic calibration for the inertial sensors is rarely
considered in this context (with some notable exceptions,
e.g. [3]). To mitigate the problem, factory calibrated IMUs
are used [4], or the inertial sensor noise model parameters
are tuned to account for unmodelled effects in the gyroscopes
and accelerometers [5].

Many modern localisation and mapping systems employ
low-cost, micro electromechanical (MEMS) chip gyroscopes
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and accelerometers. Due to the technologies used, these can
exhibit significant scale factor (sensitivity) and misalignment
errors (in the order of 1% and 1°, respectively), see [6]. Once
the sensor unit undergoes motion, these terms cause correlated
errors which quickly render a purely stochastic sensor model
invalid. This leads to errors in the extrinsic calibration and to
suboptimal performance.

Our contribution is a probabilistic framework for the joint
estimation of sensor extrinsic and IMU intrinsic calibration
parameters. Including IMU intrinsic parameters into the entire
calibration procedure improves the quality of the calibration,
and allows us to achieve an overall performance which is
limited largely by the sensor’s noise performances alone.
The novel method we present requires no tuning parameters
and is optimal with respect to stringent probabilistic
criteria. The specification of probabilistic models for those
calibration parameters which are considered constant is not
necessary.

Instead of exposing the sensors to a precise motion profile,
for example on a rate table, calibration is performed using
a visual calibration target and arbitrary motion of the sensor
unit. Calibration is then treated as a state and parameter
estimation problem of a continuous-time, non-linear system
with discrete-time, noisy measurements. We develop an
estimator based on the maximum likelihood (ML) principle
to jointly compute the state trajectory, extrinsic calibration
parameters, IMU intrinsic calibration parameters, and sensor
time delays. This batch type estimator uses all available
measurements and is optimal in the ML sense up to
linearisation errors.

Quantitative results from repeated experiments provide an
insight into achievable calibration accuracy, and show the
typical range of deterministic errors in consumer MEMS
gyroscopes and accelerometers. The results also show that
the precision and the accuracy of the extrinsic calibration
can be improved significantly by incorporating IMU intrinsic
calibration terms into the optimisation.

We compare our method directly to more complex,
parametric approaches [7]. Parametric approaches use
temporal basis functions, for example splines, to represent
the motion of the sensor unit and other time varying states
such as fluctuating sensor biases. In general, these parametric
approaches are regarded as being superior particularly for time
delay estimation. However, our experiments reveal that the
accuracy of both approaches is comparable. To the best of
our knowledge, no such comparison exists in the literature
to date.
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The remainder of this paper is structured as follows: Related
approaches with a focus on works that address IMU intrinsic
calibration are summarised in Section II. The sensor models
we employ for the calibration of visual-inertial sensor units are
described in Section III. The maximum likelihood state and
parameter estimator we developed for calibration is presented
in Section IV, and the experimental setup and results from
repeated calibration experiments are presented in Section V.

II. RELATED WORK

Calibration of camera-IMU systems is receiving
considerable attention, mostly due to their use in modern
localisation and mapping frameworks. Accordingly, this
section presents an overview of existing calibration algorithms
with a focus on methods that go beyond the calibration of
the relative position and orientation of the sensors. The
approaches can be distinguished in terms of i) the type of
estimator, e.g., recursive or batch ii) calibration parameters:
extrinsics, intrinsics, temporal alignment iii) parametric or
non-parametric representations of the sensor unit’s motion and
bias processes iv) on-line or off-line methods v) calibration
infrastructure: natural landmarks, visual calibration target,
and other equipment.

Early works by Alves et al. [8] and Lobo and Dias [9]
rely on dedicated hardware (a pendulum and a rate table,
respectively) to determine the relative pose (position and
orientation) between a camera and an IMU, and IMU intrinsic
parameters. The different calibration parameters are estimated
independently in both approaches, which is suboptimal.
In contrast, the method we present requires only a visual
calibration target (a checker board, for example), which
simplifies the calibration process.

Mirzaei and Roumeliotis [10] present a calibration method
based on an extended Kalman filter (EKF), using a visual
calibration target and hand-held motion. The calibration
parameters (extrinsics) are incorporated into the system
state and estimated along with the pose, velocity, and
sensor biases. An extension to a full batch solution is also
proposed but does not include sensor intrinsic parameters.
Kelly and Sukhatme [11] present a similar approach using
an unscented Kalman filter. In addition, they propose an
extension by using only natural landmarks, without the need
for a calibration target. Zachariah and Jansson [12] use
a sequential linear filter based on a sigma point Kalman
filter and additionally track IMU intrinsic calibration
parameters. Li et al. [13] recently proposed an EKF based
method to estimate a multitude of calibration parameters of
a rolling-shutter camera-IMU setup. Li includes IMU and
camera intrinsics, as well as time delays into the system
state. This filter based method works on-line and requires no
calibration infrastructure.

These methods require the specification of initial
uncertainties for the state of the sensor unit as well as
the calibration parameters. This is not required for our
method. In addition, probabilistic models that describe the
evolution of the calibration parameters in time need to be
specified and tuned in these works. This is the case since
even those calibration parameters which are assumed to be

fixed are part of the state. In contrast, our method allows for
parameters to be considered “fixed but unknown” and does
not require the specification of a probabilistic model for these
parameters.

In contrast to these recursive methods, Hol et al. [14] treat
calibration as a gray-box system identification problem. A full
state and state covariance of the system are propagated using
the IMU, and a linearised cost function with visual residuals
(from checker board observations), weighted according to
their predicted covariance, is minimised with respect to the
camera-IMU extrinsic calibration parameters. This approach
is similar to our method, but it does not include IMU intrinsic
parameters.

Furgale et al. [2] propose a full maximum likelihood
estimator to determine sensor extrinsics and a time
delay between camera and IMU. The method uses
a parametric representation of the unit’s motion and its sensor
biases (B-splines). This enables sophisticated calibration
features and direct computation of inertial measurement
residuals. We will refer to this method as Kalibr, since
a corresponding toolbox was released under this name.1

Krebs [15] extends this work by including IMU intrinsic
calibration parameters and is similar to our work in terms
of sensor modelling. Rehder et al. [16] pushes further to
leverage the parametric spline representation of the sensor
unit’s trajectory to determine the position of individual
accelerometers. In contrast to [16], we cannot estimate the
position of individual accelerometers. We do not estimate
angular accelerations which renders our method unsuitable for
the estimation of such parameters. However, extensions to our
method to address this are feasible.

These parametric methods require that the sensor unit’s
trajectory and the sensor biases are well approximated with the
selected basis functions. They also require the specification of
a knot density which in turn depends on the motion. This is not
the case for the method presented here. In addition, our method
has the advantage that “inertial residuals” are only computed
at time instances where visual target points are detected and
inertial measurements are integrated in-between.

III. THE VISUAL-INERTIAL SENSOR SYSTEM

A typical visual-inertial sensor system is comprised of
one or more cameras Ci which are rigidly connected to
a strapdown IMU. We define a moving body coordinate
frame B on the sensor unit such that it coincides with the
IMU’s input reference axes (IRA). Fig. 1 illustrates the sensor
system in front of the calibration target T . The corresponding
notation is briefly introduced in Section III-A. As the sensor
unit moves, the camera observes points from the calibration
target through a projection onto its camera image plane, where
the observations are corrupted by noise. The corresponding
camera measurement model is summarised in Section III-B.
At the same time, the noisy gyroscopes and accelerometers
measure the sensor unit’s angular rate and acceleration. The
corresponding gyroscope and accelerometer sensor models are
described in Section III-C.

1Kalibr is available at www.github.com/ethz-asl/kalibr (April 2016).
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Fig. 1. Visual-inertial sensor system in front of a visual calibration target.
The camera C and the IMU are rigidly attached to the sensor unit’s body
frame B , which coincides with the IMU’s input reference axes. Gyroscopes
and accelerometers measure the unit’s angular rate and acceleration, while the
camera observes target points Lm from target T .

A. Notation

We denote a vector
−→
C L , expressed in B , as BpC L . The

vector BpC L is transformed to an other coordinate frame I as
follows

I pC L = CI B BpC L (1)

where CI B is the direction cosine matrix that transforms
vectors from B to I .

We use Hamiltonian unit quaternions q for a non-minimal
but singularity free representation of rotations:

q = [
qw qx qy qz

]T =
[

qw

q

]
(2)

where qw denotes the real and q the imaginary part of q. The
direction cosine matrix C(q) is computed from q as follows

C(q) = q2
wI3×3 + 2qw�q×� + �q×�2 + qqT (3)

where �·×� denotes the skew-symmetric operator [17]:

�q×� =
⎡

⎣
0 −qz qy

qz 0 −qx

−qy qx 0

⎤

⎦. (4)

B. Camera Measurement Model

The target points (e.g. checker board corners) T pT Lm , or
T pLm in short, m = 1, . . . M , are given in the target’s reference
frame T . The transform between T and the “world” frame I is
fixed, but unknown. The translational part is unobservable and
hence we set the origin of T to coincide with I . I is aligned
with gravity, and the orientation of T with respect to gravity
(the nuisance parameter qT I ) is included in the estimation
problem to avoid a precise, manual alignment of the calibration
target.

For the observation of the mth target point in the unit image
plane of the camera at time-step k, zkm ∈ R

2, we write:

zkm = h(xk, θ) + v (5a)

= π(C pLm ) + v (5b)

= π
(
CC B

(
CB I

(
CI T T pLm − I pB

) − BpC
)) + v (5c)

where h(·) denotes the camera measurement function, xk is the
system state at time tk and includes the position I pB and the
orientation qB I of B , and θ contains all calibration parameters.
π(·) projects the target point C pLm , expressed in the camera
frame C , to the camera unit image plane, given the camera
intrinsic calibration parameters.

The discrete-time, white Gaussian noise process v is of
strength

E[vkvT
k ] = R (6)

with R = σ 2
c I, where I is a 2× 2 identity matrix. This noise

process models uncertainty in the target observations due to
sensor noise, motion blur, and discretisation into pixels.

Throughout this article, we assume that the earth-fixed
calibration target frame T is not moving with respect to I .
Specifically, we assume the earth’s rotational rate ωe = 0.
This is a legitimate assumption, given the noise characteristics
of the gyroscopes we calibrate. It has the consequence that
the orientation of the target is not fully observable, and that
only its orientation with respect to the gravity vector can be
estimated.

C. Inertial Sensor Model

The gyroscope and accelerometer sensor models have
a stochastic and a deterministic component. The stochastic
(noise) model we use are described in Section III-C1, and
the deterministic models in Section III-C2.

1) Stochastic Model: A variety of stochastic processes are
used for modelling inertial sensor noise [18]. We employ
a simple model that is widely used in the context of
visual-inertial sensing (for example in [17], [19], and [20]):
a combination of a rapidly fluctuating (white) noise process
and a slowly varying, correlated noise process (a bias).
A typical source for the wideband noise component in
MEMS inertial sensors is electronic noise from transducer
and amplifier stages, and fluctuations in drive frequency are
a source for bias variation [6].

We denote the gyroscope and accelerometer noise processes
as ng and na . To keep the notation simple we will
not distinguish between random processes and a particular
realisation (a sample path) of the process and write

ng = bg + wg (7a)

na = ba + wa. (7b)

wg and wa denote continuous-time, white Gaussian noise
processes of strength σg and σa ,

E[wg(t1)wg(t2)] = σ 2
g Iδ(t1 − t2) (8a)

E[wa(t1)wa(t2)] = σ 2
a Iδ(t1 − t2) (8b)

where δ(·) denotes the Dirac delta function. bg(t) and ba(t)
denote the slowly varying bias processes, with

ḃg = − 1

τg
bg + wbg (9a)

ḃa = − 1

τa
ba + wba (9b)

Authorized licensed use limited to: MIT Libraries. Downloaded on August 23,2020 at 15:40:12 UTC from IEEE Xplore.  Restrictions apply. 



5436 IEEE SENSORS JOURNAL, VOL. 16, NO. 13, JULY 1, 2016

where wbg and wba are white noise processes of strength σbg

and σba , the bias “diffusions”.
During calibration we will set the correlation times to

τg = τa = ∞. We do this for two reasons: i) low-cost
MEMS gyroscopes and accelerometers exhibit turn-on biases
which remain constant during the operation of the instrument
(at constant temperature) but are significant (in the order
of a few degrees per second and up to 0.5 ms−2). Setting
the correlation times to infinity prevents us from having
to estimate the turn-on biases since no a-priori mean is
required for an unbounded (i.e. τ = ∞) random walk.
ii) an exponentially time-correlated process is rarely a good
approximation for true bias variation which often exhibits
flickering characteristics. In addition, bias variation is mostly
driven by temperature changes which is itself typically
not exponentially time-correlated. Nevertheless, exponentially
correlated bias processes and turn-on biases, if desired, would
fit naturally into the concept presented here.

A viable procedure to obtain the noise strengths (the
“sigmas”) manually using the Allan variance is given in [18].
We obtain these noise model parameters automatically using
the maximum likelihood method outlined in [21]. This reduces
the potential for error since it requires no user input.
An alternative method is presented in [22].

2) Deterministic Model: Various, often identical, determini-
stic inertial sensor models exist in the literature (see, for
example, [15], [23]–[26]). A more generic accelerometer
model is proposed in [3], where each accelerometer has an
arbitrary orientation and scale on which the specific force is
projected.

For tractability, we choose a simple model based on the
model of [26]. It incorporates scale errors, axes misalignment
(cross axes sensitivity), and gyroscope g-sensitivity:

ω̃(t − �tBC) = KgMg Bω(t) + Tga(t) + ng(t) (10a)

ã(t − �tBC) = KaMa Ba(t) + na(t) (10b)

where Bω denotes the angular rate of the sensor unit B
with respect to I , and Ba denotes the specific force, both
expressed in B (i.e. the output of ideal gyroscope and
accelerometer triads). The scale (K) and misalignment (M)
matrices (see Fig. 2) are defined as follows:

Kg =
⎡

⎣
kgx 0 0
0 kgy 0
0 0 kgz

⎤

⎦ Mg =
⎡

⎣
1 0 0
γz 1 0

−γy γx 1

⎤

⎦

Ka =
⎡

⎣
kax 0 0
0 kay 0
0 0 kaz

⎤

⎦ Ma =
⎡

⎣
1 −αyz αzy

αxz 1 −αzx

−αxy αyx 1

⎤

⎦.

In order to capture a full misalignment between the gyroscope
and the accelerometer Ma contains six small angles rather
than only three. This is necessary since none of the gyroscope
and accelerometer axes align perfectly in general. Tg is
a fully populated 3 × 3 matrix that models static gyroscope
g-sensitivity.

When data from accurate sources is fused, precise temporal
alignment is essential. The visual-inertial sensor unit we
used performs a shutter-centric alignment between camera

Fig. 2. Misalignment (or cross-axis sensitivity) of the gyroscope triad.
The x-axis of the gyroscope is aligned with its corresponding input
reference axis (IRA). The (approximate) small angles γ are contained in
the misalignment matrix Mg . Note that the input axes x , y, and z are not
orthogonal.

frames and inertial measurements in hardware. IMU intrinsic
delays, however, have to be determined from measurements.
The main contributor to commercial MEMS gyroscope and
accelerometer delays are device internal (digital) low-pass
filters. We summarise their effect in one single, constant
delay �tBC . This is an approximation, since the true delay is
frequency dependent. Depending on the bandwidth of these
filters (often user configurable), typical delays range from
below 1 ms to 30 ms or more. This is significant and needs to
be taken into account when designing precision visual-inertial
estimation algorithms.

IV. CALIBRATION

We treat calibration as a classical state and parameter
estimation problem and employ a full batch maximum
likelihood (ML) estimator to obtain asymptotically optimal
state and parameter estimates (up to linearisation errors).

All unknown static quantities, such as intrinsic and extrinsic
calibration parameters, are summarised in θ . Time-varying
quantities, such as the pose of the sensor unit or sensor biases,
are contained in the state x(t). The value of x(t) is estimated
at every time instance tk where a camera frame is acquired.
In-between camera frames x(t) is integrated using the inertial
measurements. During integration noise is injected through the
gyroscope and accelerometer measurement noise processes.

The states and the parameters which are estimated are
summarised in Section IV-A. The equations that link the
inertial sensor measurements and the motion of the sensor
unit are stated in Section IV-B, and an outline of the state and
parameter estimator is given in Section IV-C.

A. System State and Parameters

The estimator we propose jointly estimates the full state
trajectory of the system at time instances k = 0, . . . K , x(tk),
as well as the extrinsic and intrinsic calibration parameters θ .

The system state x(t) ∈ S
3 × R

12 includes the body’s
orientation qB I , its position I pB , its velocity I vB , and the
gyroscope and accelerometer biases bg and ba :

x = [
qT

B I I pT
B I vT

B bT
g bT

a

]T
. (11)

The sensor biases are included in the state since they vary over
time in accordance with (9a) and (9b).
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TABLE I

THE STATES AND THE PARAMETERS WHICH ARE
ESTIMATED DURING CALIBRATION

All fixed but unknown extrinsic and intrinsic parameters are
collected in θ :

θ =[
qT

C B BpT
C �tBC qT

T I γ T kT
g tT

g αT kT
a

]T
.

qC B and BpC denote the orientation and the position of the
camera with respect to the the body, �tBC is the time delay
between visual and inertial data, and qT

T I is the orientation of
the target with respect to I (i.e. gravity), see Fig. 1. γ , kg ,
and tg contain the gyroscope misalignment small angles, scale
factors, and g-sensitivities, and α, ka are the accelerometer
misalignments and scale factors. Table I lists all states and
parameters which are estimated during calibration.

The inertial sensor noise model parameters σg , σbg , σa ,
and σba are determined automatically prior to calibration and
remain fixed (see Section V). The camera target observation
uncertainty σc is set to the equivalent of 1/5 pixel to account
for sub-pixel accurate target observations.

B. Equations of Motion

The differential equations that govern the motion of the
sensor unit can be written as follows

q̇B I = 1

2
�(Bω)qB I (12a)

I ṗB = I vB (12b)

I v̇B = C(qB I )
T

Ba + I g (12c)

where

�(Bω) =

⎡

⎢
⎢
⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎤

⎥
⎥
⎦.

We can substitute the true body angular rates Bω and
accelerations Ba with the noisy, erroneous gyroscope and

accelerometer measurements ω̃ and ã using the sensor
models (10a) and (10b). In summary, we can then write

ẋ = f(x, θ , u, w) (13)

with u = [
ω̃T ãT

]T
, and w collecting all the driving white

noise processes w =
[
wT

g wT
bg wT

a wT
ba

]T
.

C. State and Parameter Estimation

We use the maximum likelihood principle to estimate the
state trajectory and the calibration parameters of the sensor
unit. In other words we select the state and the parameters
such that the probability of observing the measurements that
have occurred is maximal. This leads to estimates which
are asymptotically unbiased and attain the Cramér-Rao lower
bound [27].

Consequently, we aim to solve the following optimisation
problem:

X̂M L , θ̂M L = argmax
X̂,θ̂

p(Z, U, X̂, θ̂) (14)

where p(·) denotes the joint probability density funtion.
X̂M L and θ̂M L denote the maximum likelihood estimates of
the state trajectory and the parameters and

X̂ = {x̂(t0), x̂(t1), . . . , x̂(tK )}
Z = {z0, z1, . . . , zK }
U = {u0, u1, . . . , uL}.

X̂ and Z collect the state estimates and camera observations
of each visible target point at time instances k = 0, . . . K
(all time instances when a camera frame was captured)
and U contains the sampled inertial sensor measurements at
time instances t0, . . . tL .

Since the process noise terms w = [
wT

g wT
bg wT

a wT
ba

]T

are white x(t) is Markov (strictly, this is only true later once
we linearised around a nominal state trajectory and nominal
parameters, since w enters the system multiplicatively).
Furthermore, since the camera measurement noise process v is
independent, the camera measurements at time instance k only
depend on the value of x at that time tk . We can therefore factor
the joint pdf in (14) as follows:

p(Z, U, X̂, θ̂ ) =
K∏

k=0

M−1∏

m=0

p(zkm |x̂k, θ̂ ) visual

×
K∏

k=1

p(x̂k|x̂k−1, Uk−1, θ̂ ) inertial (15)

where xk denotes the state at time instance k, x(tk), zkm

denotes the measurement of the mth visual target point
at time instance k, and Uk−1 collects all gyroscope and
accelerometer measurements in the time-interval

[
tk−1, tk

]

(with current estimates of �tBC ). M is the total number
of points in the target. p(zkm |x̂k, θ̂) is often denoted as the
“measurement model” (5a) and p(x̂k|x̂k−1, Uk−1, θ̂) as the
“process model” (13).
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Fig. 3. Illustration of the maximum likelihood state and parameter
estimator for calibration. At every time instance tk a camera frame is
captured, providing M target point observations zkm . In-between frames the
state is integrated starting from a nominal state trajectory xk and nominal
parameters θ , resulting in the visual and inertial error terms in (17a).

1) Nominal Trajectory and Parameters: The process and
the measurement models are non-linear. We therefore linearise
and perturb around a nominal state trajectory X̄ and
nominal parameters θ̄ with an “error state” δX and “error
parameters” δθ :

x̂k = x̄k � δxk (16a)

θ̂ = θ̄ � δθ (16b)

where the � operator is simply component wise addition,
except for the quaternions where quaternion multiplication
is used. Fig. 3 shows the sensor system and the relevant
quantities.

2) Minimal State and Parameter Representation: The
attitude of the sensor system B and two calibration parameters,
the camera extrinsic orientation and the target orientation,
are represented with unit quaternions; a non-minimal
representation in S

3. We therefore employ minimal coordinates
δχk ∈ R

15 and δη ∈ R
34 and mappings 	x and 	θ to

transform from minimal coordinates to tangent space [1]:

δxk = exp(	x(δχk)) (17a)

δθ = exp(	θ (δη)). (17b)

The error state dynamics can then be written as:

δχ̇ = F(x̄, θ̄)δχ + G(x̄)w (18)

where F denotes the derivative of the state with respect
to the minimal coordinates δχ at a particular linearisation
point x̄, θ̄ . G maps the driving white noise processes on the
state according to (7a) and (9a).

3) ML Calibration as a Least Squares Problem: Instead
of maximising the joint pdf (15) directly we minimise its
negative logarithm, the “negative log-likelihood function”.
Since the system is linearised and the different noise sources

are modelled as independent Gaussians, minimising the
log-likelihood becomes a least squares problem:

L̄(δχ , δη) =
K∑

k=0

M−1∑

m=0

�zT
kmR−1�zkm visual

+
K∑

k=1

�χT
k Q−1

k �χk inertial (19)

where �zkm and �χk denote the measurement and
(minimal) state residuals. R is the camera measurement
noise covariance (6) and Qk denotes the covariance of the
state δχk , given δχk−1 (through the injection of gyroscope
and accelerometer noise from time tk−1 to tk).

To linearise we expand around X̄ and θ̄ to first order. For
the camera measurements residuals we find

�zkm ≈ zkm −
(

h(x̄k, θ̄) + ∂ h̄
∂δχk

δχk + ∂ h̄
∂δη

δη

)

(20a)

= �z̄km − [
Hχk Hηkm

]
[
δχk

δη

]

(20b)

where �z̄km denotes the measurement residual corresponding
to the mth target point at time instance k, Hχk is the
measurement Jacobian with respect to the state, and Hηkm is
the derivative of the measurement function for the mth target
point at time tk with respect to the (minimal) calibration
parameters (i.e. the camera-IMU extrinsics).

For the state or “inertial” residuals we write

�χk ≈ �χ̄k − [

̄k−1 −I Jk−1

]
⎡

⎣
δχk−1
δχk

δη

⎤

⎦ (21)

where 
̄k−1 denotes the “error state” transition matrix
(evaluated at X̄, θ̄ ) that takes δχ from tk−1 to tk , given the
inertial measurements in this time interval. Different schemes
can be used to compute 
̄k−1 and Qk , and we use a first order
(Euler) method here. We compute 
̄k−1 by concatenating state
transition matrices computed to first order (i.e. �t Fl ) at
every IMU measurement instance tl within tk−1 to tk . The
minimal state covariances Qk are computed to first order as
well. Linear interpolation of the IMU measurements is used
to avoid additional time-delay due to the integration. It is also
used at the border of the interval. Higher order methods may
be used to improve the performance.

The derivative of the state transition with respect to the
calibration parameters, Jk−1, would be zero if only the
extrinsics or camera intrinsics were estimated. If IMU intrinsic
parameters are estimated Jk−1 is non-zero. We compute the
Jacobians with respect to δη at each IMU sample time and post
multiply them with the remaining state transition matrices up
to time tk to obtain Jk−1. The derivatives with respect to the
time delay parameter �tBC is computed in exactly the same
manner.

Finally, we normalise the weighted linear least squares
problem (17a) by pre-multiplication with the matrix square
root of the inverse of the weighting matrices R and Qk [28].
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For the residuals, we write

�z′
km = R− 1

2 �zkm (22)

�χ ′
k = Q

− 1
2

k �χk (23)

and the Jacobians are weighted analogously. The maximum
likelihood solution can now be obtained by solving the
following over determined, linear least-squares problem:

A′
[
δχ
δη

]
=

[
�χ ′
�z′

]
(24)

with

A′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣


̄′
0 −I′

1 J′
0

. . .
...


̄′
K−1 −I′

K J′
K−1

H′
χ0

H′
η0

H′
χ1

H′
η1

. . .

H′
χK

H′
ηK

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

(25)

where (·)′ denotes the normalised (i.e. pre-multiplied

with R− 1
2 or Q

− 1
2

k ) Jacobians. H′
ηk

summarises the
normalised camera measurement Jacobians for all target point
observations at time instance k.

4) Algorithm: To find the maximum likelihood solution
for the full non-linear problem we successively linearise,
compute the Jacobians, and solve (25) to obtain the least
squares solution for δχ and δη. Since (25) is large but very
sparse we use a sparse QR solver [29]. The state trajectory
and calibration parameter estimates are then updated and the
system re-linearised. This procedure is then iterated for a fixed
number of iterations (see Section V).

Initial guesses for X̄ and θ̄ must be provided to bootstrap
the estimator. In general the calibration parameters can be
initialised with the default values, i.e. unit scale factors,
no misalignment, and no g-sensitivity, and coarse extrinsics
(no translation and time shift but an approximate orientation
between camera and IMU). We initialise the orientation
and position in X̄ with pose estimates obtained from target
observations alone (where target observations are available and
“zero order hold” in-between), in conjunction with the initial
guesses for the camera-IMU extrinsics. Body velocities and
sensor biases are initialised to zero. Step-size control or robust
cost functions were not necessary for the calibration problems
we encountered.

V. EXPERIMENTS AND RESULTS

Calibration experiments were conducted to validate our
framework and assess its performance. Ground truth was
obtained where possible to evaluate the accuracy of our
method. Ground truth could not be obtained for the IMU
intrinsic calibration parameters. Where ground truth was

Fig. 4. Visual-inertial sensor unit [4] used for assessing the accuracy and
precision of the proposed calibration method. An MPU9150 MEMS IMU is
located behind each of the cameras, and a factory calibrated ADIS16448 IMU
was attached to the unit. Photo: François Pomerleau.

not obtainable repeated trials were conducted to assess
the precision of the estimator. Biases introduced through
modelling errors are in these cases not assessed. In addition,
the results were compared quantitatively with a competing,
state of the art parametric calibration method (an extended
version of Kalibr, denoted here as EKalibr [16]). We refer to
our method as discrete maximum likelihood (DML) here.

Section V-A describes the experimental setup that was used
for the experiments. Section V-B reports the inertial sensor
noise model parameters that were used in the estimator and
how they were determined. Section V-C reports calibration
results for the camera-IMU extrinsics, Section V-D analyses
the temporal alignment, and Section V-E the IMU intrinsic
parameter estimates.

A. Experimental Setup

We now describe the setup that was used to conduct the
experiments. It is important to highlight that temperature
variation has an important effect on most inertial sensors [30].
However, this is outside the scope of this report; calibration
is performed at a constant temperature only.

1) Hardware Setup: We used a visual-inertial sensor unit
that provided hardware synchronised measurements from two
cameras and three IMUs. Fig. 4 depicts the unit. A factory
calibrated ADIS16448 MEMS IMU from Analog Devices [31]
and the two consumer grade MPU9150 chip MEMS IMUs
from Invensense [32] provided gyroscope and accelerometer
measurements at a rate of 800 Hz each. The cameras consisted
of MT9V034 global shutter CMOS chips from Aptina in
conjunction with BM2820 S-mount lenses with a diagonal
field of view of 122°. The cameras were intrinsically calibrated
prior to data collection using the camera intrinsic calibration
functionality of Kalibr. Images were captured at a rate
of 20 frames per second per camera. The cameras were
pre-triggered in order to temporally align all sensor data to
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the center of the camera exposure time – a core feature of the
sensor unit’s FPGA firmware developed by Nikolic et al. [4].

2) Data Collection: The sensor unit was moved in front
of a checkerboard with 6 × 7 corners and a corner spacing
of 60 mm for dataset collection. A total of 50 datasets with
a length 20 s each were captured in sequence and stored for
post-processing.

3) Estimator: The camera noise parameter σc was set
to the equivalent of 1/5 pixel to account for the sub-pixel
accurate target point detections. The number of iterations
in the algorithm was fixed to 20, step-size control and
robust residual weighting were disabled. Spurious target point
detections were, however, discarded prior to calibration based
on a consistency check using camera observations alone.

4) Kalibr: Kalibr was run in its extended version [16].
It was configured to use the same measurements and the exact
same noise parameter settings that were used in the estimator
presented here.

B. Noise Model Parameters

The estimator we present requires gyroscope and
accelerometer noise model parameters in order to compute Qk

and ultimately a valid maximum likelihood estimate of the
calibration parameters. If the sensor noise models are incorrect
the estimator will be inconsistent, the results suboptimal, and
derived parameter covariances incorrect.

It is often difficult to obtain these parameters
unambiguously from data sheets particularly for low-cost
devices. We therefore used the method presented in [21] to
automatically determine the IMU noise model parameters
for all axes of each sensor. The models were identified
from sensor data captured when the sensor unit was at rest
at constant room temperature. An alternative procedure to
obtain these parameters using the Allan variance is presented
in [18]. This procedure can lead to similar results but it is
a manual method.

We picked the noise model parameters that corresponded
to the worst performing sensor axis per gyroscope and
accelerometer triad and then used these parameters for all
axes. This is not strictly necessary and selecting individual
noise model parameters instead would not increase the
computational complexity. This is the case since Qk in (23)
cannot be pre-computed in general. Fig. 5 shows the sample
Allan deviation (grey) for the gyroscopes and accelerometers
of the MPU9150 (MPU 0). The synthetic Allan deviations
corresponding to the model parameters used by the estimator
are shown in black (solid). The model’s expressive power is
not large enough to capture the long-term bias fluctuations
accurately but captures the noise behaviour well for short
correlation times. Table II lists the identified noise model
parameters used for the gyroscopes and accelerometers by the
estimator. Note that the MPU9150, a 4× 4×1 mm consumer
IMU, compares favourably with the ADIS16448 in terms of
noise performance.

C. Extrinsics

The translation and the rotation between camera and
IMU are key parameters in visual-inertial sensor systems.

Fig. 5. Allan deviation of the gyroscopes (top) and accelerometers (bottom)
of the MPU9150 MEMS IMU. Conventional sample Allan deviations [33] for
each sensor axis are shown in gray and Allan deviations corresponding to the
noise models used for the experiments are shown in black.

TABLE II

IDENTIFIED GYROSCOPE AND ACCELEROMETER NOISE MODEL

PARAMETERS FOR THE ADIS16448 AND THE MPU9150
MEMS IMUs AS USED FOR THE EXPERIMENTS

The estimates for the corresponding calibration parameters
are shown in Table III. The column “intr. off” refers to the
estimates when sensor intrinsic estimation is disabled (but not
the delay, which is always estimated), and “intr. on” to when
they were enabled.

The results for the MPU 0 and MPU 1 show that even for
short calibration sequences in the order of 20s, a precision
of <1 mm on all axes in translation and <1 mrad in rotation
can be achieved if IMU intrinsics are estimated (see column
“intr. on” in Table III). The precision for the ADIS is lower
which is most likely due to i) its poorer noise performance

Authorized licensed use limited to: MIT Libraries. Downloaded on August 23,2020 at 15:40:12 UTC from IEEE Xplore.  Restrictions apply. 



NIKOLIC et al.: NON-PARAMETRIC EXTRINSIC AND INTRINSIC CALIBRATION OF VISUAL-INERTIAL SENSOR SYSTEMS 5441

TABLE III

RESULTS FOR THE EXTRINSIC CALIBRATION PARAMETER ESTIMATES
FOR THE MPU9150 0, MPU9150 1, AND THE ADIS16448, WITH

RESPECT TO CAM 0. THE STANDARD DEVIATIONS (±1σ )
ARE COMPUTED OVER 50 CALIBRATION DATASETS

AND GIVE AND INDICATION OF THE PRECISION
OF THE ESTIMATOR, BUT NOT ITS ACCURACY

Fig. 6. Bottom view of the camera-IMU printed circuit board of the
visual-inertial sensor unit (section “A” in Fig. 4). Translation extrinsics
estimates, expressed in the camera reference frame, are indicated for
calibration with (�) and without (�) IMU intrinsics.

and ii) the fact that the ADIS relies on separate accelerometers
which results in “size effects” [34] (which we do not model).

Fig. 6 depicts the printed circuit board (PCB) of the
visual-inertial sensor units camera-IMU module (section “A”
in Fig. 4) with the MPU9150 MEMS IMU and the
Aptina MT9V034 CMOS camera chip (on top layer, not
visible). Extrinsic translation estimates in x and y from all
50 calibration experiments, expressed in the camera reference
frame, are indicated for calibration with (�) and without (�)

Fig. 7. Camera-IMU extrinsic translation estimation error statistics using
ground truth from CAD data to assess the accuracy of the calibration. The
error statistics correspond to the translation between CAM 0 and MPU9150 0
and refer to the center of the MPUs sensor package.

TABLE IV

MEAN AND STANDARD DEVIATION OF THE TIME DELAY ESTIMATES �t̂BC
OF THE MPUs WITH RESPECT TO CAM 0, OBTAINED BY THE

METHOD PROPOSED HERE (DML) AND EKalibr

IMU intrinsics. These results indicate that the extrinsics are
estimated more accurately when the IMU intrinsics are taken
into consideration, removing a significant bias and improving
the precision of the estimates significantly. We assume that
the accelerometers of the MPU9150 are not located in the
center of the sensor package which could explain the offset
of 1.87 mm (in mean) along the y axis.

Fig. 7 summarises the calibration results for the extrinsic
translation between CAM 0 and MPU 0. The corresponding
ground truth was obtained from CAD data and is given with
respect to the center of the IMU’s package. The figure includes
calibration results from EKalibr which is also capable of
estimating IMU intrinsic calibration parameters.

Despite the different nature of the two algorithms the
accuracy and the precision of both methods is comparable. The
estimates obtained with EKalibr contained a small number of
outliers not all of which are visible in Fig. 7.

D. Time Delay

Table IV summarises the time delay estimates we obtained
using the method presented here (DML) with and without IMU
intrinsics. It also shows the results obtained with EKalibr.
Outliers from the EKalibr estimates were removed prior
to computing the standard deviations across all calibration
experiments.

The precision of the time delay estimates increases when
IMU intrinsic parameters are incorporated into the calibration
problem (“intrinsics on”). It is in this case in the order
of 10 μs which corresponds to less than one-hundredth of
the IMU sampling time of 1.25 ms. This is surprising given
i) the different nature of the estimators, and ii) that different
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TABLE V

IMU INTRINSIC CALIBRATION PARAMETER ESTIMATES
(DML INTRINSICS on) FOR THE MPU9150 0, THE MPU9150 1,

AND THE ADIS16448. INDICATED ARE THE MEAN AND

THE STANDARD DEVIATION OVER 50 CALIBRATION

EXPERIMENTS USING THE PROPOSED METHOD

effects are lumped into the time delay parameter. It also
highlights the importance of a precise temporal alignment
between the camera and the gyroscopes. This is particularly
true for systems that exhibit fast dynamics or are subject to
vibrations.

The time delay estimates from DML (intrinsics on) and
EKalibr are almost identical and have a similar precision.
Therefore, both approaches are suitable for precise temporal
alignment.

E. IMU Intrinsics

The estimates of the IMU intrinsic calibration parameters
are shown in Table V. The misalignment and scale factor errors
of the MPU’s gyroscopes are in the order of up to 1% and 1.5°,
respectively, which is significant. The misalignment and scale
factor errors of the MPU’s accelerometers appear to be slightly
lower. The estimation results for the g-sensitivities of the
gyroscopes (not shown) are less conclusive.

The differences between the MPU 0 and the MPU 1 intrinsic
parameters highlight that the intrinsic calibration parameters
are device specific. The data sheet of the MPU9150 specifies
a scale factor tolerance of ±3% and a cross-axis sensitivity
of ±2% for the gyroscopes. The parameters we estimated are
within this specification.

VI. CONCLUSION AND FUTURE WORK

We presented a novel estimator for extrinsic and intrinsic
calibration of visual-inertial sensor systems. The method is
accurate and requires no tuning parameters; it works directly
with realistic, automatically obtained sensor noise models.
We showed that the quality of the calibration improves
significantly once IMU intrinsic parameters are included
in the estimator. The magnitude of the estimated intrinsic

calibration parameters, including time-delay, highlighted the
importance of an IMU intrinsic calibration.

Including angular velocity and angular acceleration in
the system state would be a useful extension of this
work and facilitate estimation in more general inertial
sensor configurations. Furthermore, IMU intrinsic calibration
parameters are temperature dependent and not stable over the
life time of the sensor unit. Thus an extension to automatic
in-filed calibration will be considered in future work.
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