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Figure 1: An overview of the proposed algorithm: A classifier is used to decide whether a particular visual feature is expected to be
persistent or not. Our method uses full image information as input and helps to maintain compact stable-over-time maps that can be used

for life-long localization.

Abstract

An increasing number of simultaneous localization and
mapping (SLAM) systems are using appearance-based lo-
calization to improve the quality of pose estimates. How-
ever, with the growing time-spans and size of the areas we
want to cover, appearance-based maps are often becoming
too large to handle and are consisting of features that are
not always reliable for localization purposes.

This paper presents a method for selecting map features
that are persistent over time and thus suited for long-term
localization. Our methodology relies on a CNN classifier
based on image patches and depth maps for recognizing
which features are suitable for life-long matchability. Thus,
the classifier not only considers the appearance of a fea-
ture but also takes into account its expected lifetime. As a
result, our feature selection approach produces more com-
pact maps with a high fraction of temporally-stable features
compared to the current state-of-the-art, while rejecting un-
stable features that typically harm localization. Our ap-
proach is validated on indoor and outdoor datasets, that
span over a period of several months.

1. Introduction

Generating sparse 3D models from camera images is a
key component of state-of-the-art simultaneous localization
and mapping (SLAM) systems [3]. Usually, mapping re-
lies on detecting image features, i.e. distinctive points in an
image, tracking them, triangulating 3D landmarks and char-
acterizing them using descriptors. Recent approaches tend
to use such 3D models of a given area to perform visual
localization and improve pose estimates [28] [26].

Localization systems rely on matching points from a
query frame to the previously constructed 3D model [35].

As time passes and the map gets older, however, the match-
ing becomes more and more difficult as the scenery is sub-
ject to appearance changes. In this paper, we consider
life-long mapping scenarios, where the visual appearance
can change due to lighting, seasonal, or visual and struc-
tural changes. Additionally, with the growing time-scale of
the mapping scenario, the amount of data that needs to be
stored, processed, or transferred becomes prohibitive. Fig-
ure 2 (a) presents a dataflow diagram of a mapping system
where maps are transmitted from the frontend to the back-
end. We would like to reduce this stream of maps by means
of online feature selection, as in Figure 2 (b).

Existing approaches to feature selection are not well
suited for the life-long scenario we consider. Some ap-
proaches use the past data to find features which are reli-
ably redetected [3 1], but ignore their actual semantic mean-
ing. Other methods attempt to classify hand-crafted de-
scriptors [9] to guarantee a high probability of matching.
But even if a feature is well-recognizable and a good match-
ing seems likely, it might be unreliable for life-long local-
ization, e.g., because it belongs to an object that is moved
frequently or may even entirely disappear (such as a pen or
a mug on a desk, see Figure 1).

This paper introduces a learning-based approach for the
problem of life-long feature selection. Our method is based
on a classifier of raw image patches and depth maps and
tries to grasp not only the matchability, but also a seman-
tic meaning of a particular 3D landmark. Specifically, our
contributions are:

e We propose a classifier framework to select
appearance-based map features for long-term lo-
calization purposes using raw image and depth
information.
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Figure 2: Left: The diagram presents the current flow in a typical
mapping and localization system [28]. An agent streams mapping
data (either raw image stream or visual-inertial odometry output)
to the backend. The backend processes the maps and merges them
into a single consistent global map which is then provided back to
the agent(s) for localization. Right: The proposed data flow. Use-
ful features can be selected on the agent’s side which significantly
reduces the amount of the data transmitted back to the backend.

e Resulting feature selection is shown to implicitly han-
dle semantics, such as vegetation vs. buildings out-
doors, or stable structures vs. clutter indoors.

e Maps obtained with our strategy allow for superior
localization performance compared to state-of-the-art
methods.

e We can significantly reduce the number of features in
our map (e.g. by 80%) and still correctly register most
of the query frames (75% of frames, about 20% better
than state-of-the-art).

e We show that our method generalizes well, by deploy-
ing it in environments with significantly different ap-
pearances than the training environment and on a pub-
lic long-term vision dataset.

The remainder of this paper is structured as follows. In
Section 2, we discuss related work for appearance-based
SLAM and feature selection approaches. In Section 3, we
provide a problem definition. Our methodology is explained
in Section 4 by describing the architecture of our classifier
and discussing the general concept of the underlying ground
truth training data. Setup of the experiments is discussed
and their results are presented in Section 5. The work is
concluded and discussed in Section 6.

2. Related Work

When extracting keypoints from images, SLAM systems
typically rely on well-known algorithms for detecting dis-
tinctive points, such as the Harris corner detector [8] or a
Difference of Gaussians (DoG) [24] based approach. These
algorithms are crucial as they ensure that a potentially in-
teresting point may be redetected in another image. One of

the main goals of keypoint descriptors, such as SIFT [24],
BRISK [21], or FREAK [30] is to obtain a description of
the neighborhood of a keypoint that is viewpoint, scale and
lighting invariant. Unfortunately, these algorithms do not
consider suitability of a detected keypoint for use in long-
term matching, and thus, too many partially irrelevant fea-
tures are typically stored.

There are several approaches addressing this problem in
current SLAM literature. In [2], it is proposed to store sev-
eral maps of the same area covering different appearances.
The advantage of this approach is that it contains very rich
information about the environment. This comes at the cost
of increased data quantity (including partially redundant in-
formation) and the need for introducing additional logic for
handling different map variants [22]. A method for learn-
ing place-specific classifiers for identifying distinctive land-
marks was proposed in [27] and subsequently improved in
[23]. While these approaches improve localization qual-
ity between different appearance conditions, they require
training location-specific classifiers and cannot be applied
to previously unseen environments for reducing the amount
of stored data at the time of initial recording.

Early consideration of life-long mapping can be found
in [18], [19] where an incremental update scheme for an
existing map is proposed. There, relocalization under dif-
ferent viewing conditions is achieved by storing redundant
information and relying on particular types of map repre-
sentation. Reducing map size by removing rarely observed
features from the mapping backend was proposed in [31]
and [5]. Even in a system that involves this type of map re-
duction, the present work serves as a useful additional com-
ponent because it reduces the amount of data transferred to
the backend and does not require multiple visits to the same
environment for quantifying feature usefulness.

The work presented in [38] compares SIFT and SURF
features, proposes the use of higher resolution images, and
suggests introducing additional geometric constraints for
localization. Rosen et al. [33] derive a stochastic filter that
uses Survival Analysis [10] for modeling the lifetime of a
feature. While that work is useful for map maintenance, it
does not aim at providing an a priori feature quality crite-
rion. In the work by Hartmann et al. [©], a random forest
is trained to predict the matchability of hand-crafted SIFT
descriptors. That is, the classifier predicts feature distinc-
tiveness for better matching between consecutive frames but
does not detect whether a feature (with a potentially high
matchability score) might belong to a dynamic object or
have an unstable appearance over time. In contrast, our
approach captures these aspects as the training procedure
learns directly on image patches and the groundtruth con-
tains multiple visits to the same environment over an ex-
tended period of time.



Figure 3: Two sample frames from our indoors dataset. The land-
marks that were reliably redetected every time are marked using
green circles. Those landmarks generally belong to constant ele-
ments of the environment, such as ceiling, door frames or heavy
furniture. Our aim is to train a classifier that will be able to pick
these useful features.

Furthermore, there are several approaches that assume
existence of additional geo-location information for per-
forming a feature quality assessment and a potential re-
duction of the number of features. Similarly to [9], the
approach presented by Kim et al. [16] aims at detecting
features that will have high matching score for obtaining
good geo-localization. Turcot and Lowe [37] propose an
approach that requires several different views of a scenery
to be present in order to asses the quality of the features
therein. Knopp et al. [17] propose the elimination of con-
fusing features by counting the number of false matches
within an image retrieval framework. The two latter ap-
proaches are thus not applicable to choosing stable fea-
tures when there is no prior information about the current
scenery.

3. Predicting feature reliability

Our goal is to obtain a subset of 3D landmarks of an
appearance-based map that will provide as much informa-
tion as possible for reliable localization and place recog-
nition in a life-long scenario. The task of selecting those
reliable, persistent localization features is not simple even
for humans. We could claim that static objects in the en-
vironment can generally serve as useful landmarks, but it
is not intuitively clear which of these will be redetected or
matched correctly in the future, as illustrated in Figure 3.

The decision whether a feature is suitable for long time-
span localization depends on three criteria:

e First, how well can this feature be matched in different
images?

e Second, is this feature robust against changes in the
environment?

e Third, will this feature remain in the environment for a
longer period of time?

These criteria can be formulated as a classification problem
in which detected features have to be classified as “stable”
or “unstable” for life-long relocalization.

The classification task we have formulated above is ex-
tremely challenging to model due to the number of vari-
ables that influence changes in objects. Therefore we have
opted for a data-driven approach by proposing a method that
is based on recent advances in deep learning techniques.
Particularly, convolutional neural networks (CNNs) have
proven to be highly-successful in solving various computer
vision challenges, such as object recognition [34] or video
classification [15].

Our approach to select reliable localization features is
based directly on the raw image information instead of
hand-crafted detectors or descriptors that were previosuly
used. This makes it possible to detect whether a feature be-
longs to a potentially dynamic object. Additionally, we do
not have an off-the-shelf model and would like to learn what
constitutes a stable landmark from the past experiences. We
propose the use of a CNN-based classifier that uses a local
keypoint neighborhood and optionally depth information as
inputs and outputs a probability that the feature is “stable”.
We expect the depth maps to provide additional informa-
tion about the 3D geometry of the scene. This might help to
avoid e.g. occlusion corners, which yield unstable descrip-
tors over viewpoint changes. Ground truth labeling of fea-
tures in training data is based upon the redetection statistics
that were collected over an extended period of time. This
ensures potentially good matchable descriptors to be clas-
sified as unsuitable if the underlying feature belongs to an
object that may move or disappear over time.

4. Methodology

The proposed CNN is trained wusing a set
of labeled data pairs {image,label} or triplets
{image,depth map,label}. We consider the image
patch around the keypoint as a main source of information,
providing cues of how the keypoint looks like and what
type of object it potentially belongs to.

The details of the entire process are presented in the sub-
sections below, that cover the training set formulation 4.1,
network architecture 4.2 and the training process 4.3.

4.1. Obtaining Training Datasets

Raw image patches: In this paper, we assume we are
dealing with a visual-landmark-based mapping and local-
ization system. In such a system, sparse point features are
tracked over consecutive frames and used to triangulate 3D
landmarks. We can therefore extract a patch with the local
neighborhood of a feature and use it as an input to the net-
work. The actual neighborhood size should depend on the
camera resolution, focal length of the lens, feature scale and
the environment properties.

Depth maps: The depth maps are extracted from the
clusters of camera frames using block matching and pla-
nar [6] or polar [32] rectification, depending on the type



of motion. An additional bilateral filtering step [36] with
the similarity function defined on the raw image is used to
densify the depth maps. This method fills the gaps in the
depth map while preserving the edges. Similarly as for im-
age patches, a local neighborhood of the feature is extracted
from the depth map.

Ground-truth labeling: We have decided to use binary
labeling (“stable” and “unstable”) of the features based on
the empirical probability of reobserving them. The proba-
bility can be estimated from multiple co-registered datasets
with the same trajectory, similarly to [13]. In general, we
can say that the features that get merged across most of the
datasets:

e are most likely stable objects as they are consistently
re-detected over a long period of time,

e maintain a stable appearance under lighting and view-
point changes as the datasets are recorded during dif-
ferent times of the day and features are observed from
multiple angles,

e have beneficial descriptor pattern that gets easily and
uniquely matched.

For each landmark, we compute a score

number of datasets the landmark was observed in

total number of datasets in the databse

and then label the landmark as “stable” if s > 0.5 (and as
“unstable” otherwise).

4.2. Convolutional Neural Network Architecture

The proposed network architecture is based on the
popular AlexNet network [20], which demonstrated very
good classification performance while being computation-
ally tractable on a desktop PC with a modern GPU (both
in terms of training time and GPU memory requirements).
There, we chose the last fully-connected layer to have 2 out-
puts, where each denotes a probability that the input belongs
to either the “stable” or “unstable” class. This network is us-
ing a Softmax loss function, suitable for classification tasks.
The additional depth information can be fused either as a
second image channel or in a separate convolutional layer
pipeline. The proposed network architectures are presented
in Figure 4.

To classify a 3D landmark in the map that should be com-
pressed, we calculate an output of the network for each of
its observations (so for all the image patches observing this
landmark) and then calculate a median probability of be-
longing to the “stable” class. If we need to select n best
landmarks, we can simply use the “stable” class probability
as the scoring function.
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(a) Network using only the raw image information.
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(b) Depth map fused as a second channel.
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(c) Depth map with separate convolutional layers.

Figure 4: Three CNN configurations that were evaluated. In b)
and c), the depth map information in included.

4.3. Training process

As our training set labeling might contain errors (e.g.
a potentially “stable” landmark could have been classi-
fied as “unstable” one due to temporary occlusions) and
the appearance-based landmark quality in general cannot
be rigorously defined, we decided to use fine-tuning [4].
This technique suggests to pre-train the network on a well-
labeled, large dataset (e.g. ImageNet) and only later, after
reducing the network learning rate, try to fine-tune the net-
work to the actual task. Karayev et al. [14] state that pre-
training a network allows us to reuse the mid-level features
learned from the object classification datasets and is gener-
ally superior to hand-tuned features.

While pre-trained models for ImageNet object classi-
fication are publicly available (e.g. Caffe’s Model Zoo
[12]), there seems to be no existing pre-trained model cor-
responding to our input parameters (small input image size,
grayscale). Our approach is to train a network on the Im-
ageNet dataset adapted to our needs, by scaling down the
original ImageNet images and converting them to grayscale.
The training performed on this small ImageNet dataset then
provides us with a pre-trained network. In the final step, we
fine-tune this network by learning on the labeled patch data
from the mapping system.

5. Experiments

Our experimental setup and the datasets used for evalu-
ations are presented in 5.1 and 5.2, respectively. In 5.3, we
evaluate the network’s output on the test set of “stable” and
“unstable” labeled patches. We also verify the consistency
of network predictions for patches of the same landmark
(i.e. for multiple observations along a track of the same real-
world feature). The second part of the evaluation is aimed
at verifying the influence of our proposed method of select-
ing a subset of map features on the place recognition re-



sults (see 5.4). We compare our place recognition precision-
recall results with the results of using other appearance-
based methods for feature selection and map compression.
Additionally, in Subsection 5.5, we measured the network’s
forward propagation time on a CPU and a GPU.

5.1. Experimental Setup

The LAB and HALL datasets were recorded with a
visual-inertial sensor incorporating a low-cost IMU and a
monocular, grayscale camera with a resolution of 720x480
pixels and a wide field-of-view. Visual-inertial odometry
with a translational error in the range of 1% of the distance
traveled (similar to [29]) was used to construct the maps.
Keypoints were detected using a Difference of Gaussians
(DoG) keypoint detector. These keypoints were character-
ized using FREAK binary descriptors [30] to co-register the
maps. The keypoint locations were used to extract the raw
image patches and depth map patches. Random cropping
of patches (the network takes 64 x 64 patches cropped out
of 68 x 68 keypoint patches) and mirroring them helped to
augment the training set and improve the robustness towards
viewpoint and orientation changes.

The Caffe [12] deep learning framework was used for
CNN training and image patch classification. Both learning
and classification was performed on a desktop PC with an
Intel i7-920 (@ 2.66 GHz) CPU and an NVIDIA GeForce
GTX980 GPU.

5.2. The Datasets

For evaluation we use 3 different sets of datasets with
different scene characteristics, but all containing highly dy-
namic parts of the scene.

LAB datasets consist of 27 trajectories along the same
path, of about 150m, in an indoor research lab environment
with rather confined spaces (see Figure 3). The datasets
were recorded over a period of 3 months. A total of 25
trajectories were used to construct the training set while 2
(recorded 2 months apart) were used for evaluation.

HALL datasets consist of 14 trajectories walking the
same path, of about 100m, in a large university hall. The
space is usually crowded, it also contains student work-
ing places with many dynamic objects. The datasets were
recorded over a period of 2 weeks. A total of 12 trajecto-
ries were used for training and the remaining 2 (recorded 10
days apart) for evaluation.

We have also used the public University of Michigan
NCLT datasets [1]. We have selected an area that was cov-
ered by 19 datasets in total (from (z,y) = (—301, —448)
to (—183, —432) according to the ground-truth annotation),
collected over 15 months. We have used only the front-
facing camera of the Ladybug sensor. A total of 17 of the
trajectories were used for training and the remaining 2 for
evaluation (2012-08-20 and 2012-03-17).

The training datasets were optimized by applying a
visual-inertial weighted least-squares optimization to each
run individually, minimizing the reprojection errors and in-
ertial residuals. Positions of the landmarks were included in
the optimization procedure. Afterwards loop-closure was
performed using a place recognition algorithm similar to
[25][11]. As a result of this procedure, we obtained a map
with co-registered trajectories. Based on the output of the
loop-closure engine, we also partially merged features. The
final map contains information on the number of runs and
the number of frames per run in which a feature was visible.

The two evaluation datasets were used to verify the place
recognition precision and recall (see Section 5.4). From the
first dataset, a reference map was created and reduced (in
terms of number of features) to a desired degree using the
proposed method. The second dataset was used as a query
dataset, i.e. we attempted to localize each of its keyframes
against the reduced map dataset.

The localization evaluation requires accurate ground-
truth poses so we needed to precisely align the pairs of
datasets in a common global frame. We used our loop-
closure system to find candidate 2D-3D matches between
the two evaluation datasets. The matches were then fil-
tered using a geometric-verification method (P3P pose
solver [7]). Using the feature correspondences, the maps
were co-registered. To further refine the map quality, a joint
visual-inertial weighted least squared optimization was per-
formed.

5.3. Evaluating Network Output

As a first step of evaluating our method, we have ver-
ified the binary classification accuracy of the proposed
method and the three network architectures introduced in
Section 4.2. The results are presented in Table 1. For both
the LAB and NCLT datasets, depth information provides
significant improvement over using solely the raw image
patches. Additionally, fusing the depth map information
in a fully-connected layer level yields the highest accuracy,
which might be contributed to the fact that it is easier to
optimize the convolutional filters separately. All the subse-
quent evaluations will assume this network architecture.

Table 1: Comparison of validation set binary classification accu-
racy for LAB and NCLT datasets and three network configura-
tions: 1) using only a raw image patch 2) raw image patch stacked
with depth as a two-channel image 3) raw image and depth prop-
agated through convolutional layers separately and combined in
fully-connected layers.

LAB dataset NCLT dataset
raw image patch 65.2% 69.5%
+ depth as a 2nd channel 67.4% 71.7%
+ depth in a FC-layer 71.2% 73.1%



We have also verified the relationship of the network pre-
dictions with the ground-truth labeling of the test set. The
results are visualized in Figure 5. It shows the relation-
ship between the ground truth labeling of our training set
(given by the number of runs in which a landmark has been
viewed) and the resulting classification scores on the eval-
uation set. All landmarks that have a score above 0.5 are
classified as suitable for life-long localization. From this
plot, it can be seen how, on average, image patches that
contain “stable” landmarks (i.e., landmarks visible in more
than 12 runs) are classified as good and vice versa.

We have furthermore evaluated how consistent the net-
work output is for multiple observations over different runs
of a single real-world landmark. That is, we want to know
how the scores of our classifier differ for different obser-
vations of the same feature. Ideally, all patches of a sin-
gle landmark should yield scores which are close to each
other. Figure 6 shows the distribution of zero-mean land-
mark scores for a map with 100,000 features. The results
show that the output of the network is consistent for a sin-
gle landmark, most often associating it with the same class.
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Figure 6: Distribution of classifier outputs after subtracting the
feature-dependent mean from the classifier output. Most of the
values are in the range of [—0.2, 0.2] which suggests that our clas-
sifier yields reproducible results under different viewing condi-
tions of a landmark.

A further evaluation provides a more intuitive under-
standing of the network output. Figure 7 shows an ex-
ample of a frame with classified keypoints from the LAB
dataset. Figure 8 presents the best and the worst features
in NCLT and LAB datasets according to our proposed clas-
sifier. We can state that the network implicitly learns the
semantic meaning of the patches, corresponding to which
objects tend to be “stable” and “unstable”. This matches
our initial proposal to use the semantic information and also
means that our training set actually conveyed the notion of
stability.

5.4. Evaluating Localization Quality

In the previous section, we demonstrated that the net-
work output is correlated with our ground-truth labeling and
that the patch scores correspond to our expectations. This
section evaluates how the localization quality depends on
the selected subset of features and its size.

Figure 7: A single frame and a list of detected keypoints processed
by our method. Features in the foreground belong mostly to tools
and hardware pieces that were displaced almost every day and do
not provide reliable place recognition clues. Features classified as
“stable” are most often parts of stable objects (windows, furniture,
poster on the left). It is worth noting that features belonging to
the saturated region on the wall opposite (a reflection of a ceiling
lamp) are also rejected.

LAB predicted best features

LAB predicted worst features

=
2

N CLT predicted best features

Figure 8: Image patches from the LAB and NCLT datasets that
were classified as the best/worst by our method. The selection cor-
responds with human intuition: permanent structures with strong
corners provide reliable localization cues while the clutter of dy-
namic objects (indoors) or vegetation (outdoors) should be rather
rejected.

The key idea is to use one of the evaluation datasets
(map dataset) for creating a reduced map using the pro-
posed methodology. Then, we try to register each keyframe
of the second evaluation set (query dataset) against the map
dataset. We compare the resulting 6 DoF pose with ground-
truth information. If the pose error is within the tolerance
limits (0.07 m for position, 1.0 deg for rotation), then the
localization is considered as successful. This is used to ver-
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Figure 5: Illustration of the relationship between the statistics of the classifer output and the number of datasets a particular feature was
observed in (LAB). There exists a clear positive correlation of the network output with number of datasets observing a landmark. The
median output crosses the 0.5 level between 12 and 13 datasets which matches the labels used for learning.

ify how the results of the place recognition engine change
when we reduce the number of features in the map (while
keeping features with higher classifier score).

We compare the results of our method to three other ap-
proaches that assign a score to a keypoint only based on the
visual information of its neighborhood. These methods are
briefly described below.

Random selection: Landmarks are assigned a score that
is obtained by random sampling from a uniform distribu-
tion in range [0, 1]. Random selection provides a very good
baseline to evaluate feature selection methods. If a certain
method performs better than random, then we can claim
that the criteria it uses are indeed correlated with the phe-
nomenon we try to model.

DoG score: Our mapping system uses Difference of
Gaussians (DoG) as a keypoint detector. Therefore it makes
sense to use DoG response as a very basic feature selection
method. Intuitively, the more salient the feature, the more
probable it is that we will redetect it in the next run over
the same area. We need to consider the limitations of this
method: it cannot grasp any life-long feature behavior or
actual feature matchability.

Predicting Matchability score: We also used a method
that was proposed in [9]. It is expected to select well-
matchable and uniquely-matchable features. As already
mentioned when discussing related work, this method is ex-
pected to perform worse in comparison to our approach as
it does not consider long-term feature visibility.

The results of the comparison on the LAB dataset are
visualized in Figure 9. In this visualization, we used F}
score, a popular data retrieval metric. It combines the values
of precision and recall by computing a harmonic mean of
the two:

Fl=2. precision - recall

precision + recall

Our approach outperforms the comparison methods and still
yields a good trade-off between precision and recall even af-
ter removing 80% of the worst (in terms of classifier score)
features (I score of 0.75 for our method, 0.55 for state-of-
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Figure 9: F score curves comparing our proposed method with
other baseline methods described in 5.4. The higher the F score
value for a given feature reduction number, the more keyframes
were successfully localized (with fixed tolerance values). We can
see that using the DoG response brings only a slight advantage
over random feature selection, as it does not include descriptor
uniqueness and long term feature stability. The plot also shows
that our method performs best, especially at high map reduction
values. We can reduce map by about 80% and still be able to
register about 75% of query keyframes against it. Including the
depth information brings a benefit over using the raw image only.
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Figure 10: Top down plot of the LAB dataset presenting the lo-
calization results using a map reduced by the proposed method.
The 3D features of the map were reduced by 80%, leaving about
35,000 features out of 180,000. The localization system returned
792 correct localizations and only 8 false positives.

the-art [9]). A top-down view of the localization results is
presented in Figure 10.

So far, we have proven that we are able to learn the en-
vironment characteristics and then successfully predict the



HALL dataset
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Figure 11: F} score curves comparing our proposed method with
other baseline methods on an indoor HALL dataset. The results
show that our approach generalizes well to other (but still indoor)
environments — the classifier trained on the LAB dataset still works
better than other state-of-the-art methods on the HALL data.
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Figure 12: Fi score curves comparing our proposed method with

other baseline methods on an outdoor dataset from NCLT. Our

method trained on the same dataset yields best results. Using the

suggested classifier trained on the indoor LAB datasets still out-

performs the other baseline methods.

stability and matchability of visual features for new maps of
the area. While this result seems to be already useful, prov-
ing a certain level of generalization would be advantageous.
We have therefore evaluated the performance of the sug-
gested approach on the other datasets, HALL and NCLT.
We have compared the classifier trained on the LAB dataset
with the classifiers trained on the evaluated environments.
Figure 11 and Figure 12 present the localization F}
scores of this evaluation. Even when trained in another en-
vironment, the proposed method still works better than the
second-best Predicting Matchability [9]. In Figure 11, our
approach shows only a small retrieval loss when trained on
another indoor dataset, which means it can generalize with-
ing similar environments. In Figure 12, one can notice that
the gap between Predicting Matchability and our classifier
trained on the LAB dataset is relatively small. This is in line
with intuition as, due to the change of the environment from
indoors to outdoors, our method can no longer predict long-
term stable features as well as in the area it was trained on.

5.5. Runtime evaluation

The computation time for evaluating the quality of a sin-
gle landmark patch is dependent on whether the network is

evaluated on a CPU or a GPU. On our CPU, the mean dura-
tion of classification was 17.2 ms (with a standard deviation
of 4.7 ms). When using a GPU this time goes down to 2.7
ms (with a standard deviation of 1.7 ms). Our results show
that the approach is applicable for real-time feature classifi-
cation at interactive frame rates.

6. Conclusion

This paper presents a method for assessing the suitabil-
ity of features for life-long localization. Our proposed ap-
proach uses a CNN classifier that is trained on local im-
age patches and depth images extracted from image features
over multiple runs through the same environement, at dif-
ferent times, over a period of several months. Thus, the
classifier evaluates the quality of a feature by considering
both its distinctiveness and its long-term visibility, discard-
ing seemingly good features that stem from non-persistent
objects.

By using the proposed method, we were able to reduce
the map size by over 70% while still being able to regis-
ter around 80% of the relevant keyframes. Therefore, our
classifier can significantly limit the map size, reducing the
storage and data transfer requirements in typical mapping
scenarios.

Our method provides better localization results than
other feature selection methods, even for a completely new
environment that was not present in the training set. An in-
spection of the classifier output suggests that our training
data has captured a notion of feature stability, intuitively
understood by object semantics. In future work, we find
it would be interesting to exploit environment semantics
in more detail, evaluate different network architectures or
leverage the 3D context for better classification.
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