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Abstract— Precisely estimating the pose of an agent in
a global reference frame is a crucial goal that unlocks a multi-
tude of robotic applications, including autonomous navigation
and collaboration. In order to achieve this, current state-of-
the-art localization approaches collect data provided by one
or more agents and create a single, consistent localization
map, maintained over time. However, with the introduction of
lengthier sorties and the growing size of the environments, data
transfers between the backend server where the global map is
stored and the agents are becoming prohibitively large. While
some existing methods partially address this issue by building
compact summary maps, the data transfer from the agents to
the backend can still easily become unmanageable.

In this paper, we propose a method that is designed to
reduce the amount of data that needs to be transferred from
the agent to the backend, functioning in large-scale, multi-
session mapping scenarios. Our approach is based upon a
landmark selection method that exploits information coming
from multiple, possibly weak and correlated, landmark utility
predictors; fused using learned feature coefficients. Such a
selection yields a drastic reduction in data transfer while main-
taining localization performance and the ability to efficiently
summarize environments over time. We evaluate our approach
on a data set that was autonomously collected in a dynamic
indoor environment over a period of several months.

I. INTRODUCTION

Recent developments in robotics have pushed forward
numerous new applications, where robots can provide in-
valuable help, e.g. by reaching previously inaccessible places
or performing tasks more precisely than humans. A vital
requirement for these capabilities is to accurately estimate
the robot’s pose with respect to the global environment, as
well as other agents. Often, robots need to operate in GPS-
denied areas, without any embedded localization beacons.
This motivates the need for precise, high-frequency pose
estimation made possible by using visual-inertial sensors
paired with a localization framework.

Many mapping and localization scenarios consist of re-
peated visits to the same environment by one or more agents.
In a typical setting, a mapping agent creates a map of the
current session locally [1, 2]. Such a map is then transferred
to a mapping backend which collects data from all the agents
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Fig. 1: We propose a frontend map reduction method that can be used to
reduce the data flow from the mapping agent to the mapping backend.

Fig. 2: Above: the result of the proposed method – features expected to be
stable are marked in green and feature expected to be volatile and hard to
redetect are marked in red. It is worth to note that the algorithm considers
the ceiling structure as a source reliable landmarks, but rejects objects on
the floor and the plant, as visible in the photo of the same area (below).

that is used to build and maintain a single consistent map
of the environment [1, 3]. When a certain place is revisited,
new information may be observed and used to refine the map
quality or fill possible gaps. Once an agent needs to localize
itself against the existing global map, it can request the
information from the backend and place recognition can be
used to retrieve a current pose [4, 5, 6]. In the case of mobile
robotics, we can assume that the information is exchanged
using a wireless transmission system. Thus, there is a consid-
erable limitation in the network’s bandwidth, which affects
both the backend-to-agent transmission of the localization
map as well as the agent-to-backend transmission of the raw,
local map.

To overcome these bandwidth limitations, we would like
to reduce the data flow between the backend and the agent
(and vice versa). Existing work has mostly aimed at reducing
the size of the localization map, by creating a so called
Summary Map, which is then sent to the agents [7, 8, 9]
(illustrated by the top block in Fig. 1). These approaches take
advantage of repeated visits to the same location and derive
statistics out of the collected data in an offline processing
step. Their goal is to select a set of landmarks that permits
reliable place recognition while ensuring coverage of the
entire environment and keeping the transfer size as small
as possible.

In this paper, our primary goal is to reduce the data flow
from the mapping agent to the mapping backend (illustrated



by the bottom half of Fig. 1). When not reduced, those
transfers can reach sizes of over 50MB per 100m trajectory in
a system using relatively compact 512-bit visual descriptors.
To limit this bandwidth burden, we propose a method that
only requires data from the current mapping session to
predict and select those landmarks which are most likely
to be useful for localization in the long term. To perform
the prediction, we have come up with several metrics, called
predictors, that we deem to describe aspects of this long-term
consistency. The method then learns the relative influence of
each predictor based on training data, therefore combining
numerous (sometimes weak) sources of information in order
to infer the overall quality of each landmark.

The proposed methodology is evaluated using a dataset
recorded by an autonomous robot in a highly-dynamic office
space (depicted in Fig. 2). The data was collected over a
period of several months, with varying lighting conditions
and numerous objects appearing and disappearing from the
mapped area. The evaluation not only shows improvement
over the state-of-the-art, but also provides insight into the
relative merit of a variety of proposed landmark quality
predictors (based on properties such as geometry, persistency,
and appearance). By using the method, we are able to
reduce the agent-backend data flow by 80% with a marginal
localization recall drop of about 5%.

II. RELATED WORK

Vision-based place recognition systems enable retrieval
of precise 6-DoF pose information using relatively low-cost
sensors, in GPS-denied environments, and without using any
external beacons. Current state-of-the-art place recognition
approaches range from using holistic image retrieval [10],
over features obtained using deep-learning techniques [11],
to local point features [12]. Working with local point features
(landmarks), has the advantage of providing an intuitive
framework for building up a 3D model of the environment,
and these are therefore used in this work. This map can then
serve as a database to localize from [13],[14].

In general, this process has a strong dependence on the
quality of the underlying landmark detection and description.
As a result, a range of work has been done to investigate
and quantify the quality of visual descriptors. For example,
in [15], the stability of feature descriptors over viewpoint
and lighting changes is investigated, providing a measure of
robustness. Similarly, the work of [16] focuses on learning
repeatable detectors over drastic illumination changes. This
work relies on training images capturing the same view-point
over multiple illumination conditions.

Furthermore, in relation to localization, existing work has
explored similar ideas of evaluating the quality of features
(or landmarks) with respect to the stability and reliability of
being detected repeatedly. For example, in [17] and [18] a
subset of landmarks is selected based on the uniqueness of
the descriptors. Additionally, the work of [19] evaluates the
likelihood of a SIFT descriptor to be matched in subsequent
observations, in a localization framework similar to the one
presented in this paper.

In the context of robotics, and generally within the ap-
plications where the computational power is limited, binary
descriptors such as BRISK [20] have gained popularity.
While these descriptors are more compact, they also contain
less information which reduces their discriminative power
required for a robust matching. This motivates the need for
methods that score the information content of such keypoints
for localization, as proposed in this paper.

Perhaps the most similar work to that presented here is by
Buoncompagni et al. [21], where image features are scored
based on distinctiveness, repeatability, and detectability; then
combined to give an overall saliency score. However, the
weights used therein to combine these scores are hand-tuned,
rather than learned automatically as we do here. Moreover,
the work presented in [21] is applied to the task of object
detection and recognition, and is therefore missing metrics
specific to long-term localization.

Applications to long-term mapping scenarios certainly
promote the need for map maintenance and selection of
only the most relevant landmarks. Existing work has mostly
aimed at maintaining the map over long time-horizons [8],
removing outdated information by using a change-detection
metric [22] or aggregating the experiences to eventually
encompass all possible conditions [23]. As state-of-the-art
systems push to cover larger and larger areas over longer
time-scales, there exists a growing interest in reducing the
amount of data that needs to be stored or transferred [24].
One of the ideas is to compress the global model into
compact representations, so-called Summary Maps [7], [9],
effectively subsampled versions of the centrally maintained
map that are useful for localization. These approaches, how-
ever, assume access to all past sessions and history, which
is generally only possible on a centralized mapping server.

Our goal is to take inspiration from existing summarization
methods and deploy them in an online fashion on the
agent. As a consequence, we would only send the most
valuable parts of the local map to the backend, reducing the
required transmission bandwidth and processing time. The
main contributions of the paper are as follows:

• A presentation and evaluation of novel metrics for
predicting a landmark’s relevance.

• An extension of the matchability prediction approach
presented in [19] to binary descriptors.

• A general framework, which learns the relative influence
of proposed landmark quality predictors, in order to
rank sets of landmarks in an online fashion.

• An evaluation of the entire approach in a realistic
mapping scenario using data collected autonomously,
spanning over several months.

• An analysis of the possible compression ratios that can
be used on the agent-side while avoiding a significant
loss in localization performance.

• A study of the proposed method used as a part of the
system presented in [8] to confirm its advantageous
long-term properties – getting better over time.



III. METHODOLOGY

Our approach to reducing the number of landmarks while
keeping the most relevant ones is twofold. On the agent-
side, we obtain a ranking of current landmarks, which
serves as a decision criteria for selecting the ones that are
most suitable for being sent to the server. This approach
is described in the first subsection. Afterwards, we revisit
an Integer Linear Programming based approach for keeping
informative landmarks on the backend-side. This approach
is then described in the second subsection.

A. Summarization on the agent-side

The merit of a given landmark for localization depends
on various aspects. This work aims at exploring some of
these by considering different features related to landmark
observations in order to infer the respective significance of
each landmark. Furthermore, by evaluating such features in
conjunction, even relatively weak correlations in the data can
be exploited to boost results. Thus, several evaluation metrics
are proposed, and later combined in a regression framework.
Using the results thereof, a landmark ranking policy can
be defined such that only a subset of the most relevant
landmarks is selected while still maintaining relocalization
quality during future sessions.

Before evaluating the ranking features of each landmark i,
we first define the following notation (further illustrated in
Fig. 3):

• pGL,i = (pGi,x, pGi,y, pGi,z) denotes the position of the
landmark i in the global frame G,

• pGV,j denotes the position of the keyframe j in the
global frame G,

• bi,j =
pGLi � pGV j

kpGLi � pGV jk2
denotes a unit-length bearing

vector corresponding to the ray between the feature i
and the keyframe j,

• Si is an ordered set of keyframes observing the feature
i, i.e. if j 2 Si then j observes i,

• mi,j is the the keypoint measurement of the keyframe
j, which got associated with the landmark i,

• m0
i,j = (mx,i,j ;my,i,j) represents the reprojection of a

landmark i into the keyframe j, using the corresponding
projection and distortion models.

Fig. 3: A landmark located at pGL,i is observed from a set Si of keyframes
located at pGV,j . For each keyframe, the location of the landmark in the
image plane is given as mi,j .

1) Predictor features: We will now present candidate
features related to the observation of each landmark, which
may aid in the prediction of its relevance with respect
to localization. The goal is to model the probability of
consistently redetecting and matching a landmark based on
the local information, such as geometry and the descriptor
pattern, from a single visit to its environment. We assume
any long-term mapping data, such as previous landmark
observations, is not available to us. The actual relationship
between the proposed predictor variables and the empirical
probability of redetecting the landmark will be evaluated in
Section IV. The list of candidate features proposed in this
paper is by no means complete, but we believe that it captures
a range of relevant metrics, and demonstrates the value of
combining several sources of information (even weak ones)
for landmark selection.

Track length: We will begin by looking at properties
related to local tracking information about each landmark
during the current traversal. Track length is one of the
simplest and most intuitive features, widely used by existing
map reduction methods [24, 7, 9]. Its underlying assumption
is: the more frames landmark i is reobserved in, the more
probable it is that it can be observed from a large area and
that it can easily be redetected. It is given by

�l
i = |Si| (1)

Distance traveled while observing the landmark: This
is a variant of the track length predictor, which accounts for
effects such as varying velocity or keyframe selection and is
obtained as

�d
i =

X

j2Si

kpGV,j+1 � pGV,jk2 (2)

Distance traveled between the two most distant
keyframes on a track: Similarly, this brings robustness
against trajectories that are meandering and have a large
length even though they only cover a relatively small area.
We believe this measure is complementary to the ones
presented above. Its computation requires maximization over
all keyframes observing the same landmark, i.e.

��
i = max

j,j02Si

kpGV,j0 � pGV,jk2 (3)

Maximum angle between observation rays: Addition-
ally, we propose to not only use the distance along the track,
but also the maximum angle spanned by all observation rays
from the keyframes to the landmark. If this angle is relatively
wide, the area where the landmark can be observed is likely
to be large as well. As every bi,j is of unit length, the
predictor can be efficiently calculated as a dot product:

�b
i = max

j,j02Si

cos�1 bi,j · bi,j0 (4)

Mean reprojection error: Furthermore, apart from the
landmark track geometry, it is also worth to consider the
consistency of the map in the landmark’s locality. The mean
reprojection error of the landmark into all of the observing
keyframes might be considered as a metric that contains
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Fig. 4: The idea behind the gravity constraint predictor is that clutter cannot
fly. Objects seen from below (the green rectangle in the image) must be
fixed or anchored, and are therefore expected to be relatively persistent. On
the other hand, features seen from above (the red cup) are not necessarily
anchored and can be easily displaced or removed from the environment.

additional information about the utility of a landmark. A
landmark that is triangulated from many observers with
distinct positions (given that it has no incorrect keyframe
associations) is likely to have a small reprojection error.

�✏
i =

P
j2Si

kmi,j �m0
i,jk2

|Si|
(5)

Gravity constraint: Our aim is to select not only those
landmarks which have a high chance of being redetected and
matched, but those which also tend to be stable over longer
periods of time. We therefore propose a predictor based on
what we refer to as the gravity constraint. It disambiguates
between landmarks that belong to objects which are located
on something (and not necessarily anchored) from objects
which are hanging from something and must be anchored,
otherwise they would fall down. The basic concept is illus-
trated in Fig. 4. We believe the objects that are not anchored,
such as objects placed on a desk, will prove to be less reliable
for long-term localization. Assuming g is the gravity vector
pointing down:

g = (0, 0,�1) , kgk2 = 1 ,

�g
i =

P
j2Si

bi,j · g
|Si|

(6)

Vertical coordinate: In the same vein, we also include a
predictor that relates to the specific position of each land-
mark in the mapped environment. The vertical coordinate of
the landmark’s position may provide additional information
about its long-term stability. For example, in our office
environment, objects that are either on the floor (e.g. parcels)
or within a person’s reach (e.g. things on the table) change
frequently, while objects located higher up tend to be more
stable. As this quantity might not be linear with the landmark
quality, we expect to use some nonlinear transformation f
before using this feature in our model (see Section IV-C).

�h
i = f(pGi,z) (7)

Descriptor appearance classification: Following the
methodology presented in [19] for SIFT descriptors, we pro-
pose a similar method for classifying the BRISK descriptors
using Random Forests. We believe that information about
the appearance pattern will be complimentary to the other
predictor variables that are based on map geometry. Instead
of the binary classification proposed by Hartmann et al., we
have formed 5 classes corresponding to the landmark quality.
We used Gini impurity as a split criterion and 100 trees in
total. To prevent overfitting, which is very likely with the
binary data, we limited the depth of a tree to 14. The output

of the Random Forest is transformed as follows to form a
single scalar that can be fed to the regression framework:

�rf
i =

5X

c=1

c · P (class = c) (8)

2) Regression: We would like to combine all of the fea-
tures presented above into a single, scalar landmark relevance
score, that can be used to rank the landmarks according to
the predicted quality and select a subset of them. One way of
achieving this is by using a regression algorithm and fitting
the coefficients based on a labeled training set.

The training set labeling: We propose to label the training
set based on the past evidence of observing a particular
landmark in multiple datasets covering the same trajectory
over longer periods of time. Calculating the ratio of the
number of datasets in which the landmark `i was observed
over the total number of datasets |D| approximates the
empirical probability of observing the landmark in a new
dataset:

P (`i|D) ⇡ # of datasets observing the landmark
total # of datasets

(9)

The landmark correspondences between the datasets can
be established using an appearance-based feature matching
algorithm. It is worth noting that since all the datasets were
recorded when following the same trajectory, each portion
of the environment is equally represented, and therefore
persistent and reliable landmarks should be redetected in
each traverse.

Feature selection: To confirm the true significance of the
predictors presented above, we apply the Lasso regression
method (see (10)). Depending on the value of �, the method
penalizes the absolute value of the coefficients � and might
eventually set them to 0. We therefore cross-validate over the
values of �, look for the model with the highest prediction
accuracy and observe which coefficients are not equal to
zero. Assuming X is a matrix of predictors, y is the
dependent variable and N is the number of samples, the
Lasso regression can be formalized as:

min
�

⇢
1

N
ky �X�k22 + �k�k1

�
(10)

Regression model: After performing the feature selection,
we fit our final model using ridge regression. This technique
penalizes the L-2 norm (instead of L-1 in the Lasso method)
of the coefficients and is suitable for handling collinearity
in the predictor variables. This is beneficial here, as many
of the proposed predictor variables are strongly correlated
(e.g. the distance along the track with the maximum angle
between the rays).

B. Summarization on the backend-side

While the summarization on the frontend-side mostly
focuses on information immediately available to the agent,
the backend-side may additionally incorporate information
from multiple agents and earlier traversals through the same
environment. For the backend landmark selection we used



the method proposed in [9] which uses an Integer Linear
Programming optimization to find the desired subset of
landmarks. The problem can be described as:

minimize qTx+ �1T ⇣

subject to Ax+ ⇣ � b1
NX

i=1

xi = ndesired

(11)

where A is the covisibility matrix, b is the desired number
of landmarks per keyframe and ⇣ is a slack variable. Each
landmark is represented as a binary variable xi and the goal
is to find a subset of ndesired landmarks. The landmark score
q is based on the number of observing datasets, descriptor
stability, as well as the within-dataset track length.

IV. EXPERIMENTS

In order to evaluate our methodology, we used a Turtlebot1
robot, autonomously collecting datasets in an office environ-
ment. We first present the experimental setup (Sec. IV-A)
followed by a discussion on the preparation of the training
set (Sec. IV-B), and a subsequent evaluation of the regression
model (Sec. IV-C). We compare the presented approach to
other selection methods (Sec. IV-D) and evaluate the long-
term performance of the integrated summarization system
(Sec. IV-E).

A. Experimental setup

The data for all the experiments and evaluation has been
collected using a Turtlebot robot, depicted in Fig. 5. The
navigation and local obstacle avoidance used during data
collection was based on the Hokuyo 2D laser rangefinder and
the stock ROS navigation stack [25]. Additionally, the robot
was equipped with a VI-Sensor [26] to build visual-inertial
maps for the long-term map maintenance experiments. Map-
ping data was collected over a 150 m long trajectory, twice
a day, over a period of several months. Since the datasets are
recorded within a functioning office environment, there are
many examples of dynamic objects that are often moving,
appearing, or disappearing on a daily basis (see Fig. 2).
In addition, the lighting conditions vary significantly for
an indoor environment, depending greatly on the weather
conditions and the artificial light inside the building.

Fig. 5: The Turtlebot robot used to acquire the datasets.

The datasets were then fed into the mapping system
described in [2], to perform evaluations and verify how the

1www.turtlebot.com

Predictor Coefficient R2 change if excluded
Track length (frames), �l

i 0.0050 �0.0011
Total distance, �d

i 0.0095 �0.0043
Max. distance, ��

i 0.0101 �0.0061
Max. angle, �b

i 0.1109 �0.0019
Mean reproj. error, �✏

i �0.0040 �0.0001
The gravity constraint, �g

i 0.1954 �0.0334
Z-coordinate, �h

i 0.0174 �0.0307

BRISK random forest, �rf
i 0.1165 �0.0232

TABLE I: The table shows the influence of the predictor variables in our
regression model. As all predictors are normalized, large absolute values
of coefficients imply stronger impact of the corresponding predictor. The
change in the coefficient of determination (R2) when excluding a specific
predictor, provides an idea about the unique contribution of that predictor
to the entire regression model. Thus, the larger the drop, the more unique
the predictor’s contribution is.

proposed agent-side map reduction method affects the short-
term and long-term place recognition performance. For all of
the following evaluations, we used a threshold of 40 cm when
computing the precision of the pose retrieval. The ground-
truth poses were obtained using a full-batch visual-inertial
bundle adjustment of the trajectories, as is often done when
no external motion tracking system data is available [6, 9].

B. Training dataset

The proposed method is a data-driven approach, and
therefore we need a training set which consists of multiple
mapping sessions. We have used 31 maps recorded by
the Turtlebot, aligned them together, identified commonly
observed landmarks (using [14]), and jointly refined the maps
using our visual-inertial least-squares optimization. Eventu-
ally, the landmarks in the dataset could be automatically
labeled using the empirical probability measure described
in Section III.

Furthermore, the datasets were split into two pieces: a
training part and an evaluation part. The sets of landmarks
used for training and evaluation are therefore completely
disjoint, but they still come from a similar environment
(illustrated in Fig. 6). In this way, we can test how the
proposed method generalizes e.g. within a single building.

training
evaluation

Fig. 6: Split of the collected maps between the part used for fitting the
regression parameters and for all the evaluations. The complete dataset
consists of 31 trajectories, each about 150 m long.

C. Regression model

First, we examine the relationship between each feature
and the landmark observation count, as depicted in Fig. 7.
It can be seen that all the predictor variables are correlated
with the landmark labeling and only the z-coordinate of the
landmark exposes a strong non-monotonic relationship. This
observation was confirmed by the cross-validation procedure
of the Lasso regression, where only the coefficient for the
landmark’s z-coordinate variable was set to zero (at � =
4.249 · 10�4).
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Fig. 7: The relationship between the proposed predictor variables and the the training set labeling. Yellow bars represent the interquartile range and the
violet marker is the median value. The only predictor variable that is showing a strong non-monotonic relationship with the labeling is the z-coordinate of
the landmark position. We therefore propose to use a non-linear transformation of this predictor before fitting the regression coefficients.

Instead of just removing this predictor variable, we de-
cided to add a non-linear transformation that will make the
relationship between the landmark label and its z-coordinate
monotonic. We used �h

i = max(pGLi,z, ✓z), with ✓z =
1.5 m. While this might be perceived as a strongly hand-
crafted feature, it actually has an interpretation: The land-
marks located around h = 1.5 m often belong to dynamic
objects, which is rarely true for the landmarks close to
the ceiling. After applying the transformation, the Lasso
regression did not reject any of the predictors and we were
able to obtain the model coefficients using Ridge regression.

The Ridge regression algorithm was able to fit to the
training model and reported a coefficient of determination
R2 = 0.1265, meaning that over 12% of the variance is
explained by the predictor variables. While this result may
seem low, we need to take into account that we are predicting
a very complex phenomenon using only weakly correlated
variables. Table I, displays the values of each coefficient for
the normalized predictors. We also include the change in the
R2 value after excluding each of the predictor variables –
the larger the change is, the more information was brought
by the predictor over all the other ones. We can notice that
excluding the track length-related predictors is not causing a
large change in R2, as there is always another measure that
captures similar properties. On the other hand, removing the
Random Forest prediction or the gravity constraint reduces
the R2 significantly, suggesting these features provide an
orthogonal source of information.

Finally, we also present the regression result against the
evaluation set labeling in Fig. 8. The results suggest that we
should be able to filter out the best landmarks with good

precision (the first quartile value of the 31st class is larger
than the third quartile value of the first 15 classes).
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Fig. 8: Regression results over the evaluation dataset. Yellow bars represent
the interquartile range, the violet line is the median value, and beige
crosses denote outliers. The regression model output, which corresponds
to the predicted landmark quality, shows a significant correlation with the
evaluation set labeling. Moreover, the distributions of the very good and very
bad landmark score are separable – the Q1 value of the best landmarks is
larger than the Q3 value of the worst.

D. Comparison with other selection methods

The regression output can be used to rank the landmarks
of the map and select a suitable subset for localization.
We furthermore want to analyze how the place recognition
performance is affected by the map reduction using the fol-
lowing approaches: the proposed method, random selection
and the method based solely on the track length (which was
used in [8]). The results of this evaluation are presented in
Fig. 9. While all three methods perform similarly up to a 60%
reduction, the differences are significant at reduction ratios
of 80% and higher. Our proposed method outperforms both
the random selection and the track length based methods,
having an edge in the F1-score values of 10% for 90%



landmark reduction and 30% for 98% landmark reduction
when compared to the latter.
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Fig. 9: Comparison of place recognition performance based on a map from
a single session. The landmarks of the map were reduced using different
methods and up to varying degrees of compression. We use the F1-score
to measure the performance, which is a typical data retrieval measure
combining precision and recall.

E. Iterative mapping and summarization

A backend designed for long-term mapping needs to
incorporate new data from agents over time and iteratively re-
summarize the global map ensuring its size to stay bounded.
In this context, it is interesting to investigate an optimal
ratio between agent-side and backend-side summarization.
In other words, we seek the optimal trade-off between
minimal data upload to the backend while still providing
enough information to create accurate localization maps of
the environment.

For this reason, we have built a series of maps with
varying agent-side and backend-side summarization levels
from a single dataset. A second dataset, recorded in the same
environment, is used to localize against the built maps. An
evaluation of the F1-score against the ”fraction of retained
landmarks”, as shown in Fig. 10, indicates that an agent-side
data reduction of up to 50% is feasible while only marginally
affecting the place recognition recall. Even a reduction of
80%, which vastly reduces the required transmission band-
width, only causes a drop of 5-10% in the F1-score, which
may still be acceptable in many applications.
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Fig. 10: Place recognition recall values for different levels of summarization
on the agent and in the backend. We can see that the agent-side summariza-
tion causes almost no recall drop when reducing the map by 50%. Even a
more aggressive reduction, by 80%, causes a mere drop of 5% of the recall.
This indicates that agent-side summarization can significantly reduce data
uploads to the backend while maintaining similar place recognition quality.

One fundamental question still remains unanswered. Can
we incrementally build and localize from a map that was
built by repeatedly merging in new agent data followed by
a resummarization? To investigate this, we first apply agent-
side summarization to a local agent map, then merge it into
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Fig. 11: The proposed agent-side summarization combined with backend
summarization yields good place recognition performance at reduced data
transfer. The map on the agent-side is reduced to 12,000 landmarks (about
20%) after each session and then used to build the global map in the
backend, limited to 6,000 landmarks. Initially, the experience of the mapping
sessions is summarized and the recall results are improving to reach the 75-
90% range and stabilize.

the existing global map of the backend. Next, the map is
resummarized in the backend. This process is repeated for a
set of 30 datasets as shown in Fig. 1.

Again, we evaluate the recall by localizing each mission
against the current global map before merging it in. The
results are presented in Fig. 11. It can be seen that the
recall values stabilize within the region of 75-90% after
gathering a sufficient set of stable landmarks. With this
experiment, we validate that agent-side summarization can
significantly reduce transferred data while still maintaining
good localization performance.

V. CONCLUSIONS

In this paper we have presented an algorithm that selects a
subset of landmarks which are more likely to be consistently
redetected during subsequent localization attempts. The land-
mark selection procedure is based solely on locally available
map data, rather than requiring information gained only after
several visits to an area. By relying on this reduced subset
of landmarks, the amount of data transferred between agents
and the map backend can be throttled without corrupting
localization. The proposed method scores landmarks by fus-
ing a combination of novel and existing predictor variables
using coefficients provided by a regression framework. The
approach was evaluated in a long-term, iterative mapping
scenario, using data collected by our autonomous office
mapping platform. We show that we can drastically reduce
the data transfers (by about 80% for agent to backend) while
maintaining comparable localization results. In addition, we
show that our method performs well in an iterative mapping
process, leveraging long-term experience, and integrating
easily with the backend summarization methods of [9].
This data-driven approach brings a benefit over hand-crafted
variable fusion and also allows us to learn which variables
are the most informative. In our experiments, we show
that the newly introduced gravity constraint feature and the
maximum angle between keyframe-landmark rays, as well as
the proposed binary descriptor classification have the largest
influence. While some of the proposed predictor variables



may be environment specific, the presented methodology is
generalizable to different environments.

In future work we would like to identify additional land-
mark quality predictors and deploy the system in a large-
scale, multi-agent mapping application. We also believe that
modern machine learning techniques such as convolutional
neural networks employed directly on the image data, may
provide complementary predictors to the currently proposed
features. We can furthermore imagine learning and maintain-
ing a set of place-specific regression coefficients.
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