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Abstract. This paper demonstrates how a heterogeneous fleet of
unmanned aerial vehicles (UAVs) can support human operators in search
and rescue (SaR) scenarios. We describe a fully autonomous delegation
framework that interprets the top-level commands of the rescue team
and converts them into actions of the UAVs. In particular, the UAVs are
requested to autonomously scan a search area and to provide the opera-
tor with a consistent georeferenced 3D reconstruction of the environment
to increase the environmental awareness and to support critical decision-
making. The mission is executed based on the individual platform and
sensor capabilities of rotary- and fixed-wing UAVs (RW-UAV and FW-
UAV respectively): With the aid of an optical camera, the FW-UAV
can generate a sparse point-cloud of a large area in a short amount of
time. A LiDAR mounted on the autonomous helicopter is used to refine
the visual point-cloud by generating denser point-clouds of specific areas
of interest. In this context, we evaluate the performance of point-cloud
registration methods to align two maps that were obtained by different
sensors. In our validation, we compare classical point-cloud alignment
methods to a novel probabilistic data association approach that specifi-
cally takes the individual point-cloud densities into consideration.

Keywords: Collaborative UAV mapping missions · Point-cloud genera-
tion · Vision-laser point-cloud alignment · Delegation of heterogeneouse
agents

1 Introduction

Field robotics has seen great gains in recent years owing both to robustified
robotic platforms and increasing autonomous behaviors and capabilities. In par-
ticular, autonomous unmanned aerial vehicles (UAVs) of various classes, utilizing
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state-of-the-art perceptive sensors and sensing techniques, have proven worth in
both large- and small-scale mapping applications, providing a wide array of sen-
sor data. In large-scale mapping scenarios, recent developments in solar-powered,
fixed-wing UAV (FW-UAV) technology have enabled extreme long-endurance for
low-altitude coverage of vast areas in a compact and hand-launchable form [1].
Finer-resolution mapping on a smaller scale has also been demonstrated using
aerial laser scans from autonomous helicopters [2]. Fast and fully autonomous
generation of up-to-date maps could potentially be a great advantage for rescue
workers looking for missing persons, or in disaster management scenarios, like
floods, forest fires, and earthquakes. However, a crucial element to the utility of
such operations is the ease of use for, possibly, non-technical operators. Further,
no single UAV is a one-fits-all solution for the wide array of sensing data that
may be required by end users. In these cases, a robotic team of various actors
with mixed, but complementing, capabilities, working together within the con-
text of a collaborative, cognitive framework, on a higher-abstraction, would be
particularly impactful.

2 Problem Statement: Collaborative 3D Reconstruction

Point-cloud generation from optical cameras on a large scale from small FW-
UAVs is sparse, due to, relatively high flying altitudes and limited image resolu-
tion. Contrarily, laser point-clouds generated from low-flying autonomous heli-
copters are dense, but only cover a small area. Merging these two data types
together into a single global map has obvious benefits in the sense of real-world
search and rescue or disaster management operations, where a large scale (sparse)
map could provide operators with coarse information and a means to select
“areas of interest” to send agents for a “closer look”. This closer look would
provide dense maps of smaller areas which, when merged with the global map,
results in a more accurate representation of the environment for both, human
operators and collaborating robotic actors. Leveraging the various capabilities
of each participating agent in an autonomous manner also requires a higher
abstraction of task delegation. In sum, we show a real-world demonstration of
distributed, autonomous map making and vision-to-laser point-cloud registration
from differing aerial views and mixed sensor data.

In this context, we employ a novel probabilistic data association method [3]
that robustly aligns two maps that were generated by different sensors. Com-
pared to [3], we see the following major contribution: Our data was recorded on
different agents, sensor units and flight paths and hence represents a real-world
scenario. In contrast, the data presented in [3] was recorded by the same agent
and/or even with the same sensor which simplifies the registration process1.

1 Due to space constraints in this publication, only a subset of the data can be pre-
sented. However, the datasets can be requested from the authors.
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Fig. 1. Two UAV platforms during
their cooperative scanning mission.

Fig. 2. Aerial image of test site near
Motala, Sweden.

3 Technical Approach

This section opens with an overview of the delegation framework. For more
details we refer to the companion paper [4]. The section proceeds with a descrip-
tion of the state estimation, point-cloud generation and concludes with a focus
on the point-cloud registration methods.

3.1 Mission Process and Delegation Framework

A high-level depiction of the mission process is provided in Fig. 3. The delegation
framework [5] which includes delegation modules from each of the participating
agents, provides both a formal and software infrastructure for specifying and gen-
erating collaborative multi-agent plans to achieve complex goals such as multi-
UAV 3D reconstruction of selected regions. Delegation is based on a recursive
algorithm that sends requests of the following type, Delegate(Agent1, Agent2,
Task, Context), where agent1 makes an attempt to delegate Task to Agent2,
given a specific Context specified as a set of constraints. Examples of constraints
would be temporal constraints or restrictions on flight altitudes. Agents can be
humans or robots. Tasks are represented using Task Specification Trees (TSTs).
TSTs have both declarative and procedural descriptions. Internal nodes in a TST
represent control modes such as sequence and concurrency, while leaf nodes rep-
resent domain dependent elementary tasks executable by different participating
platforms. The delegation process, as illustrated in Fig. 4, itself begins with a
goal request TST often provided by a human operator and if successful, results in
an expanded TST where all constraints are satisfied. Sub-trees in the final TST
are also appropriately allocated to those platforms with the proper capabilities.
TSTs can be generated dynamically using automated planning techniques, or
by using generic TST templates that can be instantiated appropriately. In this
example (Fig. 4), a concurrent scanning plan is generated for one region where
two separate sub-regions are covered by each of the UAVs involved, respectively.
The scan-map task in the TST calls a region partitioning algorithm to deter-
mine appropriate sub-regions for platforms to scan based on their capabilities.
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Fig. 3. Mission process: a human operator broadcasts a goal request for a data acquisi-
tion mission via its delegation module. Platforms with available capabilities reply and
a delegation process ensues among each of the platforms’ delegation modules. If suc-
cessful, the net result is a joint plan to execute. Upon execution, raw/processed data
can be stored locally or globally. During the mission or upon mission completion the
human operator can access the results via specialized interfaces.

Fig. 4. Goal TST request from operator and generated plan TST involving both RMAX
(/rmax0) and FW-UAV (/fw0). Internal nodes: (C) concurrent, (S) sequence.

The delegation process itself is quite complex and involves auctions, constraint
solving and dynamic TST expansion. The scan-map task involves use of parti-
tioning algorithms and the scan-map-single tasks involve internal path planning
by the respective platforms. During the mission execution phase, each system
executes its part of the mission TST relative to timing and other constraints.

3.2 State Estimation and Point-Cloud Generation

RW-UAV. The state estimation is used both for autonomous navigation and
for point-cloud generation by incorporating laser scanner measurements in form
of a direct georeferencing technique [6]. It is based on a Kalman filter algorithm
which fuses inertial and GNSS position data. The deployed Kalman filter uses
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a linear state-space error dynamic model derived from a perturbation analysis
of the equations of motion [7]. The Kalman filter produces state estimation at
50 Hz rate and performs the update step using GNSS measurement at 20 Hz rate.

FW-UAVs. The Pixhawk PX4 auto-pilot performs an indirect EKF-based state
estimation as presented in [8]. Within the Kalman filter linear acceleration and
angular rates measurements are used for propagation of the system state. Pres-
sure, GPS velocity and position, as well as magnetometer measurements are used
for the state update [8]. The estimated states involve the IMU’s attitude and
position in WGS84 coordinates2. The vision point-cloud was acquired with an
optical camera using a classical photogrammetric approach3.

3.3 Point-Cloud Registration

The alignment of point-clouds generated from two unmanned aerial vehicles
with different sensors involves consideration of the following challenging aspects:
Firstly, one point in the visual source point-cloud does in general not correspond
to a point in the laser target cloud and vice versa. Secondly, the sensor noise mod-
els are different: Peaky for laser but more spread for visual points due to camera
noise and triangulation errors. Thirdly, the laser point-cloud is in general denser
than the vision point-cloud. Furthermore, the robots fly at high altitudes. Con-
sequently, a dominant ground plane and few depth discontinuities are common
for most datasets. Lastly, a rough initial alignment is given by global positioning
systems such as GNSS or fused from the state estimator. To register a visual
sparse point-cloud to a dense laser point-cloud the following registration algo-
rithms are evaluated with respect to the problem specifications described above:
Iterative Closest Point (ICP), Iterative Probabilistic Data Association (IPDA),
Generalized Iterative Closest Point (GICP), and Normal Distribution Transform
(NDT).

One iteration of the Probabilistic Data Association [3] approach consists of
the following steps: For every point of the source cloud a kd-tree search is per-
formed with maximal radius rkd, and maximal number of returned neighbours
nkd as shown in Fig. 5. For every source-target correspondence, the residuals
and weights are calculated as illustrated in Figs. 6 and 7 respectively employ-
ing expectation-maximization (EM) in combination with e.g. a Gaussian or t-
distribution. The red line indicates the evolution of the true correspondence
residual and weight for 28 Levenberg-Marquardt optimization steps. Note that
the data associations do not change during one iteration but only the residuals
and weights update based on the iterative solution of the Levenberg-Marquardt
algorithm. These steps can be performed iteratively to increase the area of con-
vergence (IPDA). The advantages of this approach relevant to the problem spec-
ifications are the following: (1) a sensor model can be intuitively inserted in the
EM-algorithm based on the expected noise, (2) a point of the sparse source cloud
2 For more details about the state estimation framework we refer to [8].
3 The vision point-clouds are generated using the commercial software pix4d.
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Fig. 5. Correspondences
(grey) for one source point
obtained by kd-tree.
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Fig. 6. Residuals for one
source point after one
iteration.
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Fig. 7. Weights for one
source point after one
iteration.

can hold correspondences to many points in the target cloud. Iterative Closest
Point (ICP) [9–12] is a widely used registration algorithm that has inspired
many variants. For the evaluation we use the classic point-to-point approach
implemented in the Point Cloud Library (PCL). It performs the following steps
until convergence: (1) For every point in the source cloud find the closest point in
the target cloud. (2) Estimate and apply the transformation T that best trans-
forms the source cloud to the target cloud in the sense of a mean squared error.
Naturally, ICP’s assumption that one point in the source cloud has an exact cor-
respondence in the target cloud is not fulfilled in the sparse-dense registration
problem. Generalized ICP (GICP) [13] levers the classic ICP and point-to-plane
ICP into a probabilistic framework. Applied to the aerial registration problem,
GICP may profit from dominant ground planes due to the high flying altitudes.
In the Normal Distribution Transform [14] the points of the cloud are represented
in form of a probability distribution and hence no explicit point correspondences
between source and target cloud are established. With regard to the sparse-to-
dense point-cloud registration, NDT may fail if the visual cloud is too sparse.
The parameter notations of the individual methods are presented in Table 1.

Table 1. Parameter notations for IPDA, ICP, GICP and NDT.

Parameter Description
rkd Kd-tree radius
nkd Kd-tree max. neighbours
itermax Max. number of iterations

IP
D
A

ls Leaf size of voxel grid
dc Max. correspondence distance
εT Transformation conv. criteria
itermax Max. number of iterations

IC
P

ls Leaf size of voxel grid

Parameter Description
dc Max. correspondence distance
εT Transformation conv. criteria
itermax Max. number of iterations

G
IC

P

ls Leaf size of voxel grid
Δx Step size
Δr Resolution
εT Transformation conv. criteria

N
D
T

itermax Max. number of iterations
ls Leaf size of voxel grid
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4 Platform Description

The platforms used for the experiments include a rotary-wing Yamaha RMAX
and the two fixed-wing UAVs named Techpod and senseSoar.

4.1 RW-UAV

The Yamaha RMAX helicopter [15], shown in Figs. 1 and 3, has a rotor diameter
of 3.1 m, a maximum take-off weight of 94 kg and a payload capability of about
30 kg. The platform is capable of fully autonomous navigation, including take-off
and landing. The basic sensor suite used for autonomous navigation includes a
fiber optic tri-axial gyro system and a tri-axial accelerometer system, a RTK
GNSS positioning system and an infrared altimeter used for automatic landing.
Onboard sensors used for mapping missions include color and thermal video
cameras, as well as a class 1 SICK LMS511 PRO 2D laser scanner. The laser
scanner’s maximum range is 80 m with a maximum scanning FoV of 190◦.

4.2 FW-UAVs

Techpod. The small unmanned research plane Techpod is shown in Fig. 1. It has
a classic T-tail configuration, is equipped with one propeller, has a wingspan of
2.60 m and a nominal speed of around 12 m/s. The sensor and processing unit [1]
as well as the PX4 auto-pilot are located inside the modified fuselage and allow
autonomous mission execution such as GPS waypoint following.

SenseSoar. The highly versatile solar-UAV senseSoar was developed at the
Autonomous Systems Lab for search & rescue missions and has a wingspan of
3.1 m. With its solar panels it is able to generate an electric power of around
140 W and has shown long-endurance capabilities. Likewise as Techpod, sens-
eSoar is hand-launchable and carries the sensor pod inside the fuselage.

5 Experimental Results

The datasets were collected at two locations: (1) in Motala, Sweden which
includes a flight field with several houses and trees (Figs. 2 and 8). The resulting
experiments are presented in Sects. 5.1 and 5.2; (2) at a mountainside in Isollaz,
Italy as presented in Experiment III in Sect. 5.3.

5.1 Experiment I: Complementary Factor of Vision-Laser
Point-Cloud Alignment

In a first experiment, the vision point-cloud generated with images recorded
by a Sony ActionCam HDR-AS100V mounted on Techpod is aligned to the
laser point-cloud generated with a SICK laser scanner onboard of the RMAX.
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Fig. 8. Sample flight path of the FW-UAV (yellow) for Exp. I and II: The FW-UAV is
loitering in-air until it receives the command for scanning the area from the delegation
framework. Based on this request, the path-planner located on the ground station
generates a scanning pattern which is transmitted to the FW-UAV via telemetry. After
execution, the imagery is sent to the ground station via WiFi where the point-cloud
is generated. The path of the RW-UAV is plotted in red. The nominal altitude of the
FW- and RW-UAV is 100 m and 48 m.

Figures 9, 10 and 11 show a satellite image, colored vision and laser point-cloud
of the region of interest. Note that the laser did not receive response for parts
of the roof and barn due to a steep observation angle, relatively low altitude
of the RMAX, and due to non-reflective surfaces. On the other hand, the laser
point-cloud contains less measurement noise and a higher level of detail as can
be best seen in Fig. 12 which e.g. depicts a wind vane in the top right corner
not observed by the visible light camera. These observations underline the com-
plementary factor of the two point-clouds which, when aligned, result in a more
complete model of the environment. Figures 12 and 13 illustrate the initial mis-
alignment from side and top view respectively. This georeferencing error is given
in Table 2 and consists of a translational offset of several meters and a small
rotation. The transformation was obtained by careful manual alignment of the
point-clouds and used to evaluate point-cloud registration methods quantita-
tively. Note that due to the noisy character of the data, this manual alignment
should not be considered perfect as slightly varying alignments seem still visu-
ally satisfying. Nevertheless, this method allows to reason about convergence
and general trends. Figures 14 and 15 show the transformation error for IPDA
and ICP plotted over the number of iterations. Both ICP and IPDA converge

Fig. 9. Satellite image
as reference.

Fig. 10. Vision point-cloud. Fig. 11. Laser point-cloud
colored by height
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Fig. 12. Side-view: vision point-cloud colored by
pixel intensity and laser point-cloud in green.

Fig. 13. Top-view: vision point-
cloud colored by pixel intensity
and laser point-cloud in green.

Table 2. Initial misalignment transformation error and final translational and rota-
tional offset for IPDA, ICP, GICP and NDT. The translation error etrans and rotation
error erot are computed as proposed in [12].

tx −1.05m
ty 3.52m
tz 6.46m
ϕ −0.0162 rad
θ 0.0152 rad
ψ −0.0206 rad

Parameters etrans erot iter.
IPDA rkd : 5.0, nkd : 50, itermax : 1000, ls : 0, student-t 0.5160 0.0129 34

ICP dc : 10, εT : 10−16, itermax : 500, ls : 0 0.1992 0.0091 100
GICP dc : 10, εT : 10−16, itermax : 500, ls : 0 4.075 0.0473 6

NDT Δx : 0.1, Δr : 0.1, εT : 10−16, itermax : 1000, ls : 0 1.8213 0.025 1000

to almost the same transformation. Furthermore, from the given plots it can
be seen that the altitude offset converges first in very few iterations due to the
dominant ground planes. The translational offset in x and y usually needs more
iterations to converge. Figure 17 shows the aligned vision and laser point-cloud
using IPDA. Figure 16(a)–(d) show the final alignments computed by the indi-
vidual registration methods. The figures and Table 2 illustrate that all methods
show convergence, however, small misalignment errors are visible for GICP and
NDT.
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(a) IPDA (b) ICP

(c) GICP (d) NDT

Fig. 16. (a)–(d) illustrate that all registration methods converged, however, small mis-
alignment errors are observable for GICP and NDT depicted by the red rectangles.

Fig. 17. Aligned vision and laser point-cloud (green) using IPDA. The experiment
underlines the complementary factor of employing laser and vision to obtain a more
complete model of the environment.

5.2 Exp. II: Changes in the Environment

This experiment evaluates if agents that possess only poor absolute position
sensing capabilities can register to an a-priori obtained and well georeferenced
point-cloud. This evaluation gives an idea of how well the different methods can
deal with changes in the environment as well as about their region of convergence.

For this purpose, we align the vision point-cloud shown in Fig. 19 to the
previously generated laser point-cloud given in Fig. 18. Several changes in the
environment can be spotted, in particular, the vegetation, location of cars and
of a small house. Furthermore, we generate a random large initial misalignment
error between both point-clouds as shown in Table 3. Figures 20, 21 and 22 as well
as Table 3 demonstrate that IPDA, in particular when employing t-distribution,
results in the lowest final misalignment error, followed by GICP and ICP, whereas
NDT diverged for this scenario.
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Fig. 18. Point-cloud generated by the
laser scanner mounted on the RW-
UAV. The point-cloud consists of 568’839
points and is colored by height.

Fig. 19. Point-cloud generated by the
RGB camera mounted on the FW-UAV.
The house area shown in the top consists
of 163’595 points.

Table 3. Initial misalignment transformation error and final translational and rota-
tional offset for IPDA, ICP, GICP and NDT.

tx 11.44m
ty 12.97m
tz −8.32m
ϕ 0.025 rad
θ −0.0013 rad
ψ −0.0411 rad

Parameters etrans erot iter.

IPDA
rkd : 5.0, nkd : 200, itermax : 200, ls : 1.5, student-t 0.1152 0.011 74
rkd : 5.0, nkd : 200, itermax : 200, ls : 1.5, Gaussian 3.3278 0.0243 80

ICP dc : 10, εT : 10−16, itermax : 500, ls : 1.5 6.1891 0.0278 190

GICP dc : 10, εT : 10−16, itermax : 500, ls : 0.1 2.6757 0.0201 33

NDT Δx : 0.1, Δr : 1.0, εT : 10−16, itermax : 500, ls : 0 22.2777 0.1126 500

Fig. 20. Initial misalign-
ment and final registra-
tion using IPDA with t-
distribution.
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5.3 Exp. III: Point-Cloud Sparsity

In Experiment III, we present a very challenging dataset consisting of a tree
region with few man-made structures. The mission procedure is illustrated in
Fig. 23: The FW-UAV, equipped with a Sony ActionCam and a grayscale Aptina
MT9v034 camera, generates a rough initial point-cloud as soon as it receives
the command from the delegation framework initiated by the human operator.
Subsequently, the RW-UAV scans the region of interest with the aid of the SICK
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Fig. 23. The satellite image shows the flight path of the fixed-wing UAV in yellow and
of the RMAX helicopter in red. The plots on the right show the altitude (top: RW-
UAV, bottom: FW-UAV) in form of height above ground with respect to the individual
starting positions.

Fig. 24. One of the laser strips to be aligned to
the vision point-cloud.

Fig. 25. Point-cloud generated by
the grayscale camera mounted on
the FW-UAV.

(a) Prior alignment (b) Post alignment

(c) Prior alignment (d) Post alignment

Fig. 26. The dense laser point-cloud is shown in blue. The prior misalignment is espe-
cially visible at the hill gradients. The tree region was only partially captured by the
FW-UAV and could be densified by the laser scan.
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laser for refinement. The generated laser and vision point-clouds are shown in
Figs. 24 and 25 respectively. We deliberatively use the point-cloud generated
by the low-resolution grayscale camera for point-cloud registration and employ
IPDA to underline its performance when dealing with dense and sparse point-
clouds. In contrast to Experiment I and II, the images are geo-registered by the
onboard EKF instead of using the raw GPS measurements. As expected, the
initial misalignment error is limited to 3.34, −2.51, −0.26 m for the translational
and −0.016, 0.0082, 0.0089 rad for the rotational offset. The initial misalignment
and final registration are shown in Fig. 26.

6 Conclusion

In this paper, we presented an automated delegation framework that trans-
lates top-level commands of the human operator into low-level commands of
the employed agents. We validated the framework based on realistic scenarios
in two locations including more than 20 flights using a RW- and FW-UAV rep-
resenting an arbitrary fleet of heterogenous agents. Furthermore, we chose the
task of scanning a common area as one exemplary mission of the delegation
framework. The point-clouds acquired during this scanning process are auto-
matically registered and transferred back to the human operator and visualized
in the dynamic cognitive map. Our experiments show the complementary fac-
tor of vision-laser point-cloud registration from aerial views and demonstrate the
successful deployment of the Probabilistic Data Association algorithm. The final
goal of this project will be to allow accurate path planning of unmanned ground
vehicles (UGV) or smaller multicopter UAVs based on the aligned map and, for
instance, to delegate them inside the buildings’ interior. Future work will also
include the integration of a previously presented human detection algorithm [16]
into the delegation framework. The algorithm returns the UTM location of pos-
sible victims along with their detection uncertainties. Other agents may verify
these possible human detections to decrease the false alarm rate.
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