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Free LSD: Prior-Free Visual Landing Site Detection
for Autonomous Planes
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Abstract—Full autonomy for fixed-wing unmanned aerial vehi-
cles (UAVs) requires the capability to autonomously detect poten-
tial landing sites in unknown and unstructured terrain, allowing
for self-governed mission completion or handling of emergency
situations. In this work, we propose a perception system ad-
dressing this challenge by detecting landing sites based on their
texture and geometric shape without using any prior knowledge
about the environment. The proposed method considers hazards
within the landing region such as terrain roughness and slope,
surrounding obstacles that obscure the landing approach path,
and the local wind field that is estimated by the on-board EKF.
The latter enables applicability of the proposed method on small-
scale autonomous planes without landing gear. A safe approach
path is computed based on the UAV dynamics, expected state
estimation and actuator uncertainty, and the on-board computed
elevation map. The proposed framework has been successfully
tested on photo-realistic synthetic datasets and in challenging
real-world environments.

Index Terms—Aerial Systems: Perception and Autonomy,
Aerial Systems: Applications, Field Robots

I. INTRODUCTION

SMALL-scale autonomous planes promise to become a
ubiquitous tool in the commercial, industrial, and scientific

sectors due to reduced operational costs and ever increasing
robustness. Especially the ability to map large areas and to
carry out perpetual surveillance tasks, e.g. by using a solar-
powered platform, makes this type of unmanned aerial vehicles
(UAVs) interesting for various applications. While mission op-
eration can already be completely automated [1], appropriate
landing site detection (LSD) and the actual landing procedure
still requires an experienced safety pilot. Furthermore, in
future fully autonomous beyond visual line-of-sight (BVLOS)
operation, finding an appropriate landing spot in unstructured
terrain is essential for handling emergency scenarios.

Existing LSD systems focus on the cases of vertical takeoff
and landing (VTOL) platforms, or large-scale planes, may rely
on offline-computed data, or require prior knowledge about
the environment. These approaches are not suited for small-
scale autonomous planes operating in unknown environments
which are constrained by potentially limited energy supply
and computational power. Furthermore, their size and speed
requires taking the wind into consideration, and due to their

Manuscript received: September, 10, 2017; Revised December, 15, 2017;
Accepted February, 6, 2018.

This paper was recommended for publication by Editor Jonathan Roberts
upon evaluation of the Associate Editor and Reviewers’ comments.

1Autonomous Systems Lab, ETH Zurich, Switzerland.
2CSAIL, MIT, Cambridge, MA, USA.
Digital Object Identifier (DOI): see top of this page.

Region Tracking

Segmentation Classification

Region TrackingRegion TrackingRegion Tracking

Slope Surf. Normal Roughness

(subset)

...

Fig. 1: The goal is to find the optimal landing spot while consid-
ering terrain shape, terrain texture, terrain roughness, terrain slope,
surrounding obstacles, estimated local wind field, and UAV dynamics
and their uncertainties.

potential absence of landing gear, preferably landing in flat
grass to not damage wings or fuselage.

The present work proposes Free LSD, a real-time visual
landing site detection and approach path computation algo-
rithm for autonomous fixed-wing UAVs. To keep the problem
complexity manageable, potential landing sites are tracked
and ranked over multiple frames. Only the most promising
landing sites are forwarded for finer-grained, 3D processing.
No a priori data such as markers, pre-classified Digital Surface
Maps (DSM), or orthomosaics are utilized which allows the
framework to be operated in completely unknown terrain as
is exemplary shown in Fig. 1. To the best of the authors’
knowledge, this paper presents the first such system, which
is also suitable for application on small-scale UAVs. The
work incorporates wind field and nearby obstacle consider-
ation during approach path generation and decision making.
Performance of the full framework is evaluated in unknown
terrain using various synthetic datasets and real-world test
flights.

II. RELATED WORK

Automated landing of VTOL UAVs has been considered
in a broad body of works. For instance, Desaraju et al. [2]
propose a vision-based landing site evaluation framework to
land on rooftops employing a Gaussian process to estimate the
landing site confidence. Forster et al. [3] present an efficient
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way to compute a vision-based elevation map on-board of a
quadrocopter. Johnson et al. [4] use a LIDAR-based elevation
map to compute terrain smoothness, roughness, and incidence
angles to determine safe landing spots for spacecrafts. Garcia-
Padro et al. [5] introduce a contrast descriptor to land an
autonomous helicopter far away from obstacles under the
assumption that the terrain is flat. Brockers [6], Cheng [7], and
Bosch et al. [8] make use of homography decomposition for
identifying planar landing spots. Theodore et al. [9] employ
a stereo vision rig mounted on an unmanned helicopter to
compute a range map and infer safe landing spots based
on roughness, slope, and distance to closest obstacle. The
above approaches have in common that the main criterion for
VTOL UAVs is flatness of the landing spot. However, our
application requires taking the plane dynamics and additional
space requirements during landing into consideration.

For fixed-wing platforms, most research focuses on cases
where the system recognizes modified environments or man-
made structures, or where the landing site is pre-defined.
Visual servoing is employed by Huh et al. to steer a small
fixed-wing UAS into a red dome-shaped airbag located in an
obstacle-free area [10]. Similarly, the framework proposed by
Laiacker et al. [11] recognizes a runway from the UAV and
compares it to a known model. Given a designated, obstacle-
free landing site, the height above the ground plane can be
estimated using monocular visual-inertial [12] or biologically
inspired stereo vision [13].

In contrast to the aforementioned works, this paper aims
at actively selecting appropriate landing spots in an unknown
environment. This requires generation and assessment of po-
tential candidate areas which has, to the best of our knowledge,
only been discussed in two publications: Fitzgerald et al.
[14] seek to find suitable areas for crash-landing an airplane
in case of emergency. This is achieved by detecting areas
without edges on a low-quality image from a defined height
of 2500 ft, before classifying them in order to retrieve large
grass fields. However, relying on a fixed height makes this
approach disadvantageous in case of emergencies. The closest
approach to ours is presented by Warren et al. [15]. However,
we see the following caveats that we address with the present
work: Firstly, the terrain classification is derived from stored
data. Secondly, the approach trajectory and height of nearby
obstacles is only considered indirectly by the Principal Com-
ponent Analysis (PCA). Thirdly, wind is not considered which
has a large effect on smaller and light-weight planes. Finally,
the approach by Warren et al. [15] does not run in real-time.

III. THE APPROACH

An overview of our proposed algorithm for the detection of
landing sites is shown in Fig. 2: The raw image is segmented
into homogeneous regions (Sec. III-C) and classified into
grass or ¬grass using a binary Random Forest (RF) classi-
fier (Sec. III-D). In parallel, the on-board EKF of the Pixhawk
autopilot estimates UAV pose and local wind field (Sec. III-A),
and depending on the provided image rate and overlap of
subsequent frames, a tracker or matcher is employed to con-
nect consecutive camera frames via feature tracks. Resulting

coarse depth measurements (Sec. III-B) are used in the region
manager to track region of interests (ROI) based on geometry.
The region manager (Sec. III-E) accumulates all information
about the regions and ensures consistency and uniqueness
by merging regions. Based on these metrics, a coarse grade
determines which region is passed on as a candidate to the
fine, 3D evaluation backend. This backend is periodically
updated by the frontend with the n most promising ROIs. All
observations of a ROI, UAV pose estimates, and previously
generated feature tracks are used to perform key-frame based
bundle adjustment (BA) and dense 3D reconstruction (Sec.
III-F). Metrics such as terrain slope and roughness (Sec. III-G)
are derived from the classification results and 3D model.
A distance-to-hazard map determines the landing spot with
maximum distance to the next hazard. Based on this touch
down point, the estimated local wind field (Sec. III-H, III-I),
and the 2.5D elevation map, a collision-free approach path is
computed. The final decision module outputs the landing site
location, optimal approach vector, and statistics about the final
landing site. The actual tracking of the final approach path is
described in [1]. The metrics of the best landing sites are stored
to be able to land quickly in the case of an emergency.

A. State Estimation

The state estimator on the Pixhawk autopilot estimates body
poses, velocities, IMU biases, and the wind field using GNSS,
IMU, magnetometer, and pressure measurements [16]. The
camera pose estimates are forwarded to the on-board computer
which associates camera poses to the corresponding images
based on the pre-calibrated camera-IMU transformation [17].
These camera pose estimates are used as priors in the bundle
adjustment if an area was marked as potential landing spot.
Additionally, feature tracks are generated using, depending on
the provided framerate, a Kanade-Lucas-Tomasi (KLT) [18]
feature tracker or matcher. These feature tracks are used to
generate coarse depth measurements (cf. Sec. III-B) for region
tracking in unknown terrain and in the bundle adjustment of
the backend thread (cf. Sec. III-F).

B. Coarse Depth Measurements

To obtain a segmentation that is robust to height changes
as well as for geometric region tracking, coarse depth mea-
surements are required in the frontend (cf. Sec. III-E). Since
our system is designed to operate in unknown terrain without
a priori data, the depth measurements need to be retrieved
at runtime1. One possibility would be to triangulate a few
features at every step and build up a mesh by using, for in-
stance, Delaunay triangulation [19]. However, to obtain depth
measurements at a given pixel, computationally expensive ray-
casting queries would be required. Furthermore, a depth image
obtained from two views from a virtual stereo rig based on
unoptimized camera pose estimates is prone to errors since
we assume a noisy low-level state estimator. Instead, we take
advantage of the feature tracking thread that is running in

1Depending on the application and flight altitude, the coarse depth mea-
surements could alternatively be obtained from a ground plane approximation.
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Fig. 2: Proposed framework for prior-free landing site detection. The frontend segments, classifies, and manages the potential region of
interests (ROIs). The most promising site is forwarded to the backend for finer 3D analysis and computation of approach path.

parallel: To map from 2D to 3D coordinates, the N feature
tracks closest to the queried keypoint location are determined.
The final height of the requested keypoint location is obtained
by performing multi-view triangulation of the N nearby tracks
and inversely weighing the resulting triangulated landmark
heights by their distance to this keypoint.

C. Region Segmentation
The Canny edge detector [20] is applied to the grayscale

spectrum of the raw image (cf. Fig. 3a). The result is shown
in Fig. 3b. Next, the distance transform [21] is applied to
compute for every pixel the distance to the closest non-zero
pixel or Canny edge. The distance map, as shown in Fig. 3c, is
then thresholded to obtain homogeneous regions (cf. Fig. 3d).
Note that high contrast obstacles, such as the trees in the lower
right section of the images, are often already identified at this
early stage. The threshold in the Canny edge detector and the
distance transform is computed from a function of height, to
ensure that the same areas are segmented independently of
the UAV’s altitude above ground2. The thresholds are derived
from Google Earth imagery and span an altitude range of 58-
382m above ground. For reference, the nominal flight altitude
of the deployed UAVs in this publication is between 50 and
250m.

(a) (b) (c) (d)

Fig. 3: Region segmentation: (a) Original input image, (b) Canny
edges, (c) Distance transformation, (d) Segmented regions. Regions
with a small area are rejected already at this step.

D. Region Classification
The segmentation module presented in the previous section

only ensures that the extracted area is homogeneous. In the

2The height-dependent thresholds were approximated by pcanny(h) =
−1.72e − 06h3 + 0.00148h2 − 0.43h + 62.97, and pdtf(h) = −1.23e −
06h3 + 0.0011h2 − 0.39h+ 56.82 as shown in Fig. 2.

classification step, the texture and color properties of the
homogeneous area are extracted to classify the regions into
grass or ¬grass as illustrated in Fig. 2. For this purpose,
we employ a binary Random Forest (RF) [22] classifier which
takes the segment from Fig. 3d and predicts the binary label.
The classifier is trained based on a set of features extracted
from the homogeneous regions. The parameters of the classi-
fier, that is, the maximal tree depth and the number of samples
needed per branch, are optimized on the training data by 10-
fold cross-validation. The ground truth for the classification is
established as follows: Homogeneous regions are obtained by
the described segmentation algorithm. After visual inspection,
the region is manually labeled as grass or ¬grass.

Texture
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Fig. 4: Features used for binary classification of homogeneous re-
gions. Note that the Gabor feature applied in form of a convolutional
filter expands the area, but only the information within the ROI mask
is used to compute mean and standard deviation.

1) Feature Space: For each segmented ROI, twelve color
and six texture features, are extracted as summarized in Fig. 4.

a) Color: For each sub-image, the mean and standard
deviation for all three color channels are computed across the
complete segmented ROI. This is performed not only in the
standard RGB color space, but also in the HSV space. In many
computer vision applications, the HSV space has proven to be
less sensitive to lighting conditions, when comparing to RGB
[23]. While the classifier performs better using the HSV color
space than RGB only, it performs even slightly better when
using the features extracted from both: The classification error
for only using RGB is 15.36%, 14.26% for HSV, and 14.12%
for RGB and HSV. We hence get a total of (2 color spaces) ×
(3 colors) × (2 features per color) = 12 color features which
are computed for every sub-image. While more advanced color
features can be extracted, e.g. using various combinations of
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color histograms [24], we here only rely on these very simple
features for low computational costs.

b) Texture: Color features are sensitive to illumination
and viewing angle. To better assess the spatial arrangement of
intensities in an image patch we additionally compute texture
descriptors. For this task, we employ Gabor filters [25], linear
filters related to the Gabor Wavelet that extract texture features
from gray-scale imagery [26] more efficiently than alterna-
tives, such as Local Binary Patterns (LBP) [27], [28]. The
following parameters for phase offset ϕ, standard deviation of
the Gaussian function σ, and spatial aspect ratio γ are used:
ϕ = 0, σ = 4 and γ = 0.02. The orientation θ in which
the edges are detected is not important in our case, since
we try to detect rotation-independent descriptors. The Gabor
filtered images are computed by applying a convolutional filter
in four directions θ ∈ {0, π/4, π/2, 3π/4} and taking the
mean of the extracted values. This approach yields three Gabor
filtered images for the wavelengths λ ∈ {0.5, 1, 5}. The final
descriptors used in the classifier correspond to the mean and
standard deviation of each of these Gabor filtered images,
hence a total of six texture descriptors.

E. Region Manager: Tracking, Merging and Updating

1) Tracking and Updating of ROIs: As illustrated in Fig. 5,
the classification and segmentation module forwards the con-
tours of a fine classification mask, defined by a set of 2D
points, to the region manager. To simplify tracking and to
increase the robustness with respect to impairing factors3, the
fine classification mask is approximated by the minimum-area
enclosing rectangle using the rotating caliper method [29],
[30]. Next, the 2D positions of the four corners and centroid
of the rectangle are projected into 3D based on the available
coarse depth measurements (cf. Sec. III-B). As depicted in
Fig. 6, two cases are distinguished for initializing and updating
ROIs: In the first case, the ROI is fully visible, i.e. all 2D
corners are within the current image. If so, the corresponding
3D corners are fixed and ROI statistics (ngrass, nobs, grade, cf.
Sec. III-E3) are set. In a subsequent frame, a re-detection is
triggered if the centroid of the ROI in the current frame is
within the corners of an existing ROI, which is determined
by the winding number method [31]. In this event, only the
tracked ROI statistics are updated. In a second case, if the
ROI is not fully visible, i.e. one or more corners are on the
border of the image, the 3D corners are set but not fixed. If,
in a subsequent re-detection, the ROI is again not fully visible
the corners are updated by the vertices of the rectangle that
incorporates all 8 corners [29], [30] until the ROI is fully
visible and the first case applies.

2) Merging of tracked ROIs: It can occur that two tracked
regions of interest correspond in fact to the same landing area.
An example for this would be if only half of the area is
detected in a series of subsequent frames, while the other half
is detected later on in other frames. However, in following
images, the UAV could detect the complete area. Without any
merging, the pipeline would update values such as the corner

3E.g. the depth approximation introduced by the coarse depth measurements
utilized for the 2D to 3D projection.

3D

2D

Coarse depth measurements

ROI fully visible?

Corners fixed

No

Corners not fixed

Yes

Fig. 5: ROI initialization Fig. 6: ROI tracking

position or the area size for one of these two areas because the
projection of the newly detected center point is placed inside
it, while the other half would remain unchanged. To avoid
this duplication, every time the corner positions of a tracked
ROI get updated, we verify for each ROI in the tracker if it
belongs to that area, i.e. if the center of the newly updated
area is in-between the four corners of the tracked ROI. If that
is the case, the two ROIs are merged: the corner positions are
set to the ones of the largest area and the grade is updated
accordingly.

3) Grading of tracked ROIs: The tracked ROIs are ranked
according to a cost function assigning a grade to each landing
spot. The grading function makes use of metrics computed
for each tracked region: The area A spanned by the four
projected corners, the number of images in which the ROI
has been classified as grass ngrass, and the total number of
images in which it has been observed nobs. The grade is zero if
A < Amin or nobs < nobs,min and ngrassn

−1
obs otherwise. In order

to reduce the computational load, only the 20 ROIs with the
highest grade are retained. This is implemented in form of a
FIFO buffer in order to first remove regions which have not
been detected or recognized recently.

F. Dense 3D Reconstruction

To reduce the computational burden, the subset of frames
is iteratively selected for pose refinement and dense recon-
struction as follows: The first pose is set as key-frame (KF).
Then the next frame for which the feature track connection
count first drops below 30 is determined. The predecessor
to this frame is the next KF if the baseline is larger than a
minimal baseline. Next, for every KF, the best suited stereo-
pair is selected based on baseline, epipolar and viewing cost
[32]. The selected set of poses is refined by incorporating pre-
computed pose priors and feature tracks (cf. Section III-A).
Finally, the optimized poses are used for planar rectification
[33], [32] in combination with Semi-Global Block-Matching
(SGBM [30]). As described in Section III-G, inverse distance
weighting (IDW) is used to convert from 3D point cloud to
2.5D elevation map which smoothes the depth estimates.

G. Hazard and Decision Layers

This module uses the dense point cloud as input in order
to evaluate the landing spot with respect to potential hazards
such as terrain slope and terrain roughness. The data flow
is presented in Fig. 7, for a sample visualization we refer
to Fig. 10. To avoid the high memory load introduced by
calculations involving the dense 3D point cloud, we convert to
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Fig. 7: Hazard and Decision Layers.

a 2.5D grid-based elevation map [34] (Fig. 10c). The elevation
of each cell is computed using KD-tree based [35] IDW in
a radius around the cell. From the 2.5D elevation layer, the
surface normal in z-direction nz of cell cij is computed based
on the current cell and the 8-nearest neighbor cells using PCA.
From the surface normal layer, the cell’s slope αij with respect
to the ground plane is obtained from αij = arccos(nz,ij)
(Fig. 10d). Terrain roughness is identified as a second hazard.
The terrain ruggedness index (TRI) [15] is computed based on
the elevation difference to the 8 adjacent cells and allows, for
instance, to differentiate between flat grass, crops, or forest
regions (Fig. 10e). A fine classification mask is computed
as logical OR operation of all fine grass classification masks
associated with this ROI. All hazard layers are only evaluated
in the cells that have been classified as grass in at least
one observation. Next, the hazard layers are transformed into
binary layers using thresholds that are acceptable for the UAV
(Fig. 10f). The binary hazard layers are then fused using the
logical OR operation. In order to find safe and contiguous
landing paths, we then apply the distance transform (Fig. 10g)
to the fused binary hazard map. This yields, for every cell, the
distance to the closest hazard. Further decision layers, such as
a probabilistic point cloud or classification uncertainty layer,
could easily be incorporated.

H. Landing Approach Vector

The question remains from which direction the landing
spot is to be approached while circumventing the surrounding
hazard(s). The local wind field, which is estimated in real-

wind w

Obstacle ROINot reachable

∆βw

xapp

xTD

Rloit

∆TD

Fig. 8: Computation of the landing approach vector while considering
the local wind field as well as hazards surrounding and within the
landing region (ROI).

time by the on-board EKF, constrains the approach vector as
illustrated in Fig. 8. Small-size fixed wing UAVs need to land
against the wind direction in order to minimize the distance
required for landing and to remain in a safe ground velocity
region. Furthermore, we consider nearby obstacles obscuring

the landing field based on the maximum descent rate of the
UAV as well as obstacles in the landing region which are
encoded in the distance map. Based on these considerations,
the landing approach path is computed [1]:

xapp =
vland cos(γland)− w cos(∆βw)

vland sin(γland)
happ

Rloit =
(vland cos(γland) + w)2

g tan(φland)
(1)

with

xTD : touch down point ∆TD : touch down uncertainty (10m)

w : wind magnitude (estimated) vland : airspeed ref. (13m/s)

γland : flight path angle ref. (4 deg) ∆βw : crosswind uncertainty (30 deg)

happ : altitude approach (12m) φland : maximum bank angle ref. (11 deg),

and approach vector xapp = xTD +
[
xappw̃x, xappw̃y, happ

]�
,

where w̃ =
[
w̃x, w̃y

]�
is the normalized 2D wind vector.

The numbers in parentheses are sample values used for the re-
search UAV Techpod. Based on the distance-to-hazard map we
efficiently take the touch down uncertainty into consideration.
In particular, starting from the safest touch down point, we
check all cells traversed by the linear approach path and loiter-
down circle for collision to obstacles based on the elevation
map and incorporating a safety margin. Note that approach
path optimization, in this context, is only used for a more
meaningful scoring of potential landing sites and the provision
of an informed approach vector. It should not be seen as a
replacement for local re-planners which are still necessary for
real-time corrections upon the actual landing attempt.

I. Wind Vector Estimation

The UAV’s state estimator provides online estimates of the
local wind field [16]. All measurements taken within a certain
distance to the center of a ROI are associated with a landing
spot as shown in Fig. 12, denoted by the black circle. To
counteract slowly changing wind fields, we compute the final
wind vector using the exponentially weighted moving average.

IV. RESULTS

A. Region Classification

Fig. 9 shows the binary classification of homogenous re-
gions into grass or ¬grass. The results from random forest
[30] and the multi-layer perceptron (MLP) based artificial
neural network (ANN) [30] are plotted in form of the true
positive rate (TPR) vs. the false positive rate (FPR) on the
left (ROC chart) and the precision recall curve on the right.
While ANN performs slightly better in the validation set,
the measured computational cost to predict a binary label is
2.4e − 3 ± 7.8e− 4ms for RF and 1.7e − 2 ± 9.0e− 3ms
for ANN. Since ROIs are tracked over several frames (cf.
Sec. III-E) the influence of a single false prediction is mitigated
by the probabilistic score as seen in Fig. 10 and Fig. 11. Hence
RF was employed in all further experiments for computational
speed-up.
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Fig. 9: Binary classification of homogenous regions into grass or
¬grass for artificial neural network (ANN) and random forest (RF)

B. Computational Costs

The runtime evaluated on the real-world experiment
“Switzerland” is shown in Table I. In the frontend, most of
the time is spent on classification, in particular, to compute
Gabor features. The frontend can run at 12.49Hz with Gabor
features and at 21.82Hz when only relying on color cues.
One could speed up the Gabor filter by only retrieving few
samples from the image patch instead of using a convolution
over the whole patch. However, since the incoming image
rate is 4Hz, the frontend (including Gabor features) is more
than three times faster than real-time. Note the efficiency of
the geometric region managing. BA, dense reconstruction and
terrain analysis introduce, depending on the grid resolution, a
certain delay and are available in near real-time.

samples mean ± stdev
Segmentation 250 7.20 ± 0.64
Class. w. Gabor 250 70.30 ± 22.76
- feature vector 2217 3.56 ± 4.95
- predict 2217 2.4e−3 ± 7.8e−4
Class. w/o Gabor 250 36.89 ± 20.28
- feature vector 2217 0.21 ± 0.27
- predict 2217 2.1e−3 ± 8.4e−4
Region Manager 250 1.57 ± 0.39
Bundle Adjustm. 23 20.1 ± 3.2
Dense Reconstr. 23 16.7 ± 2.3
Decision Layers 10 1083 ± 21.09
Approach Vector 10 527.48 ± 20.65
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TABLE I: Runtime in ms for the “Switzerland” dataset. Note that
the frontend (light gray) and backend (dark gray) run in separate
threads. Runtime of frontend, BA, and dense reconstruction is mea-
sured per frame. Runtime of decision layers and approach vectors
is computed for a ROI point cloud consisting of 4.2× 106 points
(300× 300 cells, 1.0m resolution). Evaluated on Intel(R) Core(TM)
i7-4800MQ CPU @ 2.70GHz.

C. Semi-Synthetic Dataset

The results obtained from a synthetic dataset are shown in
Fig. 10. The images are rendered using Blender from poses
computed by a simple lawn mower scan pattern generator.
The underlying mesh was obtained from photogrammetry with
images taken from a real camera, hence denoted as semi-
synthetic. The overview mesh in Fig. 10 shows the scan
pattern, corresponding frame indices on the left, and the three
landing spots with the highest score. The right side of Fig. 10
shows the output of segmentation and classification for a
sample frame. The second row of Fig. 10 plots the number of
observations, classification certainty, score, and estimated area
over time. Although there are some wrong classifications, the
final classification certainty for all three regions is above 95%.

Fig. 10a to 10g show the backend, i.e. the dense reconstruction,
decision, and hazard layers, the final touch down point, and
linear approach path for the highest-scoring ROI #53. Note
that the touch down points on the right side of Fig 10g show
a high distance to the next hazards within the ROI but are
rejected due to obstacles (house) along the planned linear
approach path.

D. Experiments with Real-World Datasets

The real-world experiments are analysed using datasets
recorded onboard of AtlantikSolar and Techpod. Details about
the hardware setup and the employed platforms can be found
in [1] and [36], respectively. The first experiment was con-
ducted with the research platform Techpod in snowy scenery
in Switzerland (cf. Fig. 11). Fig. 11b and 11e show the
segmentation and classification of the landing region that
received the highest score. The ROI is then forwarded to the
backend thread which generates the decision layers based on a
dense point cloud. The terrain slope and terrain roughness are
used to compute the distance map (Fig. 11g) which encodes
the distance to the next hazard in form of a memory-friendly
grid map. From the score plots in Fig. 10 and 11 one can see
that already the coarse grading can achieve a large separation
between desired and undesired landing spots. Depending on
the UAV characteristics and desired landing spot, the final
ROIs can be compared based on the output of the fine landing
site evaluation. In the next experiment, the distance to terrain
elevation during the landing approach is given as an example
for such a fine ROI output statistic.

This second real-world experiment was conducted with
AtlantikSolar at the beach of Rio Pará, Brazil. Fig. 12a
presents the overview mesh and camera poses for visualization,
generated with Pix4D. Fig. 12b and 12c show the 2.5D
elevation map, the estimated wind vector, and approach path
to the selected landing site. The touch down point in the
landing site is selected based on the maximum distance to
nearby hazards while considering obscuring obstacles. The
plots below show the path of the UAV with marked landing
spot, wind speed measurements, and altitude profile during the
approach path. For instance, the margin between UAV altitude
and terrain elevation is predicted to drop to approx. 2m,
35m before touch down. As discussed in Section III-H, the
algorithm is designed to land against the wind vector, here with
a magnitude of ca. 5.5m/s. This has the advantage of reducing
the aircraft’s forward ground velocity, allowing for shorter
landing ground distances and thus increasing the perceived
descent angle with respect to ground, yet still maintaining the
chosen airmass-relative flight path angle γland (cf. Equation
1).

V. CONCLUSION

In this paper, we present a vision-based prior-free landing
site detection algorithm which is designed for small UAVs,
taking into account terrain texture, shape, roughness, and
slope. The wind field, which is estimated online, and obscuring
obstacles are taken into consideration when computing a
suitable landing spot while regarding UAV dynamics and
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Fig. 10: Semi-synthetic dataset illustrating the output of the segmentation, classification, tracking over time, and fine 3D terrain evaluation.
The simulated camera is a down-looking Aptina MT9v034 (0.36MP). The (unscaled) mesh was downloaded from https://skfb.ly/6o9Y7.
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Fig. 11: Manual flight with Techpod in snowy scenery in Zurich, Switzerland. The employed camera is an IDS UI-3241LE (1.92MP). The
experiment underlines the performance in a challenging environment and with an obliquely mounted camera.

safety margins. To keep the problem complexity manageable,
we segment the environment into regions and use a layered
2.5D grid map for decision making. The implemented multi-
threaded framework combines a light-weight, real-time fron-
tend with a backend which is periodically updated based on
the host’s resources. The linear approach path, which is one
output of our method, can be tracked as demonstrated in [1].
The actual landing attempt should furthermore be supported by
a perception system, local re-planners and low-level autopilot
logic to avoid previously unmapped or moving obstacles. In
this paper, a simplistic key-frame selection algorithm was
employed. In a next step, an algorithm should be designed
that guarantees complete coverage while minimizing the re-
construction uncertainty, utilized number of poses, and hence
the computational costs. Inter-matches and free-space carving
[37] could be incorporated into the reconstruction process. In

future work, the classification and reconstruction uncertainty
around a promising landing spot and approach path should
be actively reduced by adapting the scanning pattern online
and, in particular, by low-terrain flights to increase the ground
resolution.
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Fig. 12: Semi-automated flight at the beach of Rio Pará, Brazil, using AtlantikSolar and a down-looking GoPro HERO3 Black (12MP):
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