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Abstract

Visual localization in outdoor environments is subject to varying appearance

conditions rendering it difficult to match current camera images against a previously

recorded map. Although it is possible to extend the respective maps to allow precise

localization across a wide range of differing appearance conditions, these maps

quickly grow in size and become impractical to handle on a mobile robotic platform.

To address this problem, we present a landmark selection algorithm that exploits

appearance co‐observability for efficient visual localization in outdoor environments.

Based on the appearance condition inferred from recently observed landmarks, a

small fraction of landmarks useful under the current appearance condition is selected

and used for localization. This allows to greatly reduce the bandwidth consumption

between the mobile platform and a map backend in a shared‐map scenario, and

significantly lowers the demands on the computational resources on said mobile

platform. We derive a landmark ranking function that exhibits high performance

under vastly changing appearance conditions and is agnostic to the distribution of

landmarks across the different map sessions. Furthermore, we relate and compare

our proposed appearance‐based landmark ranking function to popular ranking

schemes from information retrieval, and validate our results on the challenging

University of Michigan North Campus long‐term vision and LIDAR data sets (NCLT),

including an evaluation of the localization accuracy using ground‐truth poses. In

addition to that, we investigate the computational and bandwidth resource demands.

Our results show that by selecting 20–30% of landmarks using our proposed

approach, a similar localization performance as the baseline strategy using all

landmarks is achieved.

K E YWORD S

landmark selection, long‐term localization, multisession mapping, visual localization, wheeled

robots

1 | INTRODUCTION

Visual localization systems are able to provide centimeter‐accurate
pose estimations of mobile robots with a low‐cost sensor setup. This
renders visual localization an attractive alternative to light detection

and ranging (LiDAR)‐based localization which today still requires

mechanically complex and thus expensive hardware. However, and

in contrast to aforementioned LiDAR localization, visual localization

systems targeting long‐term usage suffer from variations in

appearance conditions which render matching between currently

observed visual cues and landmarks stored in the map difficult. A

promising approach to address this problem has been proposed in

the form of multisession maps (Churchill & Newman, 2013;

Mühlfellner et al., 2016; Paton, Mactavish, Warren, & Barfoot,
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2016) that incorporate visual cues from more than one appearance

condition. The resulting maps, however, quickly grow in size and

become impractical to handle on the mobile robotic platform. To

mitigate this problem, the map can be stored on a cloud‐based
backend and made available to the robots in operation over a mobile

data network. Apart from relieving the mobile platforms from

storing large maps, such a shared‐map scenario offers further

advantages such as the reduction of redundant data, more efficient

map maintenance, and an increased potential for collaboration

between the robots. However, it also requires map data to be

exchanged between the map backend and the robots in operation

over bandwidth constrained mobile data networks. This renders it

important to only exchange map data that can be used for

localization at the particular time and place of operation. For this

purpose, it may be sufficient to only transmit a fraction of map data

available in the multisession map, since the latter must cover all

possible appearance conditions, while the robots in operation are

exposed to only one condition at a certain time and place. It is the

aim of this study to exploit this potential and select landmarks for

localization based on the current appearance condition. This serves

the following two purposes: (a) Keep data exchange between the

map backend and the mobile platform, and therewith the bandwidth

consumption on a mobile network, as low as possible, and (b) lower

the computational resource demands on the mobile platform,

increasing the real‐time capability of visual localization. At the same

time, a localization performance as good as if all landmarks are used

ought to be maintained. Additionally, the appearance‐based land-

mark selection enables decoupling of the localization performance

from map management. While the multisession map at the backend

may be large, and resource intensive to maintain, localization on the

vehicles remains as efficient as if only one map session of the current

appearance condition was available (Figure 1).

In summary, we present a complete visual localization system

yielding six‐degree‐of‐freedom (6DoF) pose estimates at each time‐
step with the capability to perform efficient online data association

through appearance‐based landmark selection.

The main contributions of this paper are as follows:

• We derive, analyze, and compare a ranking function for appear-

ance‐based landmark selection based on appearance equivalence

classes, which can be shown to maximize the number of observed

landmarks with respect to the current appearance condition.

• We investigate in detail the impact of the incorporation of

observation sessions, a lightweight extension to the visual maps

boosting the landmark selection performance.

• In an extensive evaluation involving three collections of outdoor

data sets, one of them publicly available, we thoroughly investigate

the performance of the appearance‐based landmark selection in

real‐world conditions, and compare against related popular ranking

schemes from information retrieval.

• An analysis of the computational performance demonstrates the

real‐time capability of the appearance‐based landmark selection

and reveals its potential to reduce the computational load on the

vehicle platforms.

This paper builds upon our previous work on appearance‐based
landmark selection presented in Bürki et al. (2018) and Bürki,

Gilitschenski, Stumm, Siegwart, and Nieto (2016) and extends it in

several aspects: We derive several appearance‐based ranking functions,

relate them to popular ranking schemes from information retrieval, and

evaluate the expected performance of our proposed solution on a related

state‐of‐the‐art simultaneous localization and mapping (SLAM) frame-

work which keeps separate maps for different appearance conditions. In

addition to that, we present an extensive evaluation on the publicly

available University of Michigan North Campus long‐term vision and LIDAR

data sets (NCLT) collection, including an assessment of the localization

accuracy with respect to ground truth. The evaluation on the NCLT data

set collection further demonstrates the applicability of our proposed

appearance‐based landmark selection on a second robotic platform in

highly challenging long‐term outdoor conditions, and with a considerably

different camera system than the one on the vehicle used in the parking‐

lot and city environment. A detailed investigation of the computational

F IGURE 1 Shared‐map scenario
motivating our work. One large map
containing landmarks from multiple rich‐
and observation sessions is stored and
maintained on a cloud‐based map backend.
Vehicles en route under different

appearance conditions retrieve selected
landmarks matching their operation
conditions (thick dashed arrow), use those

landmarks for visual localization (turquoise
lines), and report back a set of recently
observed landmark identifiers (thin dashed

arrow) [Color figure can be viewed at
wileyonlinelibrary.com]
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performance further not only shows the real‐time capability of the

localization pipeline, but also reveals lower computational resource

demands as a second benefit of our proposed appearance‐based
landmark selection apart from reduced bandwidth consumption.

2 | RELATED WORK

Outdoor environments are subject to appearance change, such as

change in illumination, as well as change in weather and seasonal

conditions. This has a severe impact on long‐term operations of

outdoor visual localization systems, as in many environments, change

in appearance is much more pronounced than structural change, and

already with relatively small time offsets of only several hours

between mapping and localization it may become difficult to match

currently observed visual cues against a visual map. The approaches

to overcome this can in general be distinguished into two categories:

(a) initiatives to overcome the appearance dependency, and (b)

attempts to collect and organize appearance‐dependent visual

features from differing conditions. We first present an overview

over relevant work associated with category (a), before investigating

approach (b) in detail in the remainder of this section.

Lategahn, Beck, and Stiller (2014) propose a local feature descriptor

named DIRD which exhibits illumination invariance superior to other

popular local features such as SURF (Bay, Tuytelaars, & Van Gool, 2006)

or BRIEF (Calonder et al., 2012). Nevertheless, the ability to cover

appearance change is ultimately still limited in situations with such strong

differences in illumination that let already the location of keypoints be

different. In another approach to reduce the appearance change in

images, Maddern et al. make use of the spectral properties of color

cameras to apply an illumination invariant gray‐scale transformation to

images, effectively removing shadows and reducing the appearance

variation due to sunlight (Clement, Kelly, & Barfoot, 2017; Maddern et al.,

2014; McManus, Churchill, Maddern, Stewart, & Newman, 2014; Paton,

MacTavish, Ostafew, & Barfoot, 2015). This on the one hand requires a

photometrically calibrated color camera, and on the other hand is only

able to reduce the appearance change due to sunlight. Any other source

of appearance change, such as seasonal change, or daytime versus

nighttime, are not tackled. McManus, Upcroft, and Newman (2014)

propose to learn location‐dependent detectors that retrieve large patches
in images deemed descriptive for the respective place. While this shows

promising redetection performance across vastly different appearance

conditions, it is not able to allow as precise a metric localization compared

to using local corner‐based features.

As mentioned above, an alternative approach to tackle the

challenge of appearance change lies in the attempt to enrich a visual

map with features from varying conditions to extend its appearance

coverage and allow localization across a wide range of differing

conditions. Konolige and Bowman (2009) present a visual mapping

algorithm that is able to aggregate visual cues from different states

of the environment into so‐called “views,” which are managed over

long time spans. Their system, however, mainly targets structural

changes in dynamic indoor environments.

In a similar vein, Milford and Prasser have extended RatSLAM

(Milford, Wyeth, & Prasser, 2004) in Prasser, Milford, andWyeth (2006)

and Milford, Prasser, and Wyeth (2005) to include “local view cells” and

abstract “experience maps” which allow associating previously visited

places under varying appearance with the same physical location on the

one hand, and the creation and maintenance of a spatially consistent

map representations across different environmental states on the other

hand. However, the ability to yield a precise metric pose estimate of the

robot in a Euclidean coordinate system is limited. In contrast to that,

Churchill and Newman (2013) propose a visual mapping framework

called “experience‐based mapping” which explicitly creates and main-

tains separate and detached visual maps for varying outdoor environ-

mental conditions. While this allows precise metric localization under

essentially any appearance condition, the visual pose estimate can only

be expressed with respect to a Euclidean coordinate system that is

unique to each experience. Any interpretation in a common coordinate

frame requires links between experiences based on additional sensor

modalities, such as (differential) global positioning system (GPS), which

may considerably deteriorate the accuracy of the resulting pose

estimate. For this reason, attempts have been made to represent visual

features—or landmarks respectively—from different appearance condi-

tions in a single Euclidean coordinate frame. Paton et al. (2016) present

a visual mapping framework able to incorporate and correlate

landmarks from different appearance conditions in outdoor environ-

ments with respect to a manually taught reference path. This enables a

mobile robot to autonomously repeat the reference route in vastly

different appearance conditions. The principle behind the multisession

mapping framework proposed by Mühlfellner, Furgale, Derendarz, and

Philippsen (2015) and Mühlfellner et al. (2016) is similar. However,

there is no notion of a privileged path, or session, respectively, in the

map. Instead, the resulting map offers accurate metric localization under

any appearance condition represented by the map sessions with respect

to a single coordinate frame.

While incorporating landmarks from varying environmental

states into a single map can successfully enable visual localization

in vastly different appearance conditions, the resulting maps quickly

grow in size and become impractical to maintain. Therefore,

considerable efforts have been made to optimize map representa-

tions such that keeping redundant landmarks is avoided and only a

minimal set of landmarks that allow localization across different

appearance conditions is maintained. In Dayoub, Cielniak, and

Duckett (2011), a long‐term short‐term memory model is proposed

to dynamically distinguish useful from outdated landmarks. Such a

model of change is especially suited to environments that exhibit

some fraction of features stable in appearance (e.g., corners on the

ceiling), but does not have the ability to represent multiple

environment states at the same time. In contrast to that, Hochdorfer

and Schlegel (2009), Konolige and Bowman (2009), and Milford and

Wyeth (2010) employ clustering of images, or landmark, respectively,

to keep the number of visual cues bounded. While Konolige and

Bowman (2009) use a similarity measure between local feature

clusters to discard redundant “views,” Hochdorfer and Schlegel

(2009) remove visual data on the landmark level by assessing the
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usefulness of individual landmarks inside a local feature cluster based

on position uncertainty. Milford and Wyeth (2010), on the other

hand, simply discard landmarks randomly to keep the data density

within a cluster bounded. More recent and advanced approaches to

bounding the map size for metric visual localization systems are

presented in Dymczyk, Lynen, Bosse, and Siegwart (2015) and

Mühlfellner et al. (2016). Mühlfellner et al. (2016) compare a number

of different algorithms to prune landmarks in a multisession map,

demonstrating selection criteria involving the number of observed

sessions, and the total number of observations of a landmark to yield

good metric localization performance over long time spans while

keeping the map size limited. Along a similar vein, Dymczyk et al.

(2015) propose to solve an integer linear problem with cost terms

favoring landmarks with a large number of observations on the one

hand, and guaranteeing a minimal number of landmarks observed

from every keyframe on the other hand.

In contrast to metric localization, efficient map representations

and landmark selection has also been studied in the context of place

recognition. In Fayin and Košecká (2006) and Schindler, Brown, and

Szeliski (2007), only the SIFT (Lowe, 1999) features contributing the

most to the distinctiveness of places are retained in the map.

Similarly, in Cummins and Newman (2011), Johns and Yang (2013), Li,

Snavely, and Huttenlocher (2010), Stumm, Mei, Lacroix, and Chli

(2015), and Johns and Yang (2014), covisibility of features is used to

efficiently and effectively solve the place recognition problem.

While all of these works describe successful approaches to

mitigate the problem of ever‐growing visual maps, they only address

offline map maintenance with the goal of computing as small a map

representation as possible while at the same time maintaining the

appearance coverage over different conditions. However, as men-

tioned in Section 1, in long‐term operations in outdoor environments,

the map must cover a far wider range of appearance conditions than

what the robots in operation require at a given point in time. This

offers a potential to further optimize data usage and minimize

computational demands on the robot platforms by distinguishing

currently useful data based on the observed appearance conditions in

an online fashion. In this regard, Linegar, Churchill, and Newman

(2015) have presented an algorithm for the experience‐based
mapping framework which adaptively selects the best matching

“experience” in an online fashion. While their work addresses a

similar motivation as ours, there are substantial differences as a

consequence of the different underlying map representation and

mapping framework. For instance, the different appearance condi-

tions are represented as individual maps, and therefore their

selection of useful map data occurs on the level of “experiences.”

In contrast to that, and due to the fact that our landmarks in the map

from the different appearance conditions are all expressed with

respect to a single coordinate frame, we are able to select map data

matching the current appearance conditions on the level of individual

landmarks. In addition to that, we may also select landmarks from

more than one session in the map at a time, allowing to benefit from

potentially overlapping appearance conditions. In a similar vein,

Mactavish, Paton, and Barfoot (2017) propose an online selection of

useful map data for their Visual Teach & Repeat framework.

Analogous to Linegar et al. (2015) and in contrast to our work, they

perform the selection on the level of “experiences,” are, however,

able to simultaneously use more than one “experience” for localiza-

tion. Their work differs further to ours in the methodology at the

basis of the selection algorithm. While they compute and compare

current images to their map images employing a visual bag‐of‐words

representation, we evaluate the current appearance conformity on

the basis of co‐observability of recently observed landmarks. This

relieves us from having to train and rely on a vocabulary.

3 | BACKGROUND

In this section we briefly introduce the components of our

localization and mapping system. This overview supports and

facilitates the understanding of subsequent sections in this paper.

We first describe the mapping process and the resulting map

structure, before presenting our visual localization module in detail.

3.1 | Mapping

Mapping is performed in an offline process. We track FREAK (Alahi,

Ortiz, & Vandergheynst, 2012) features1 from one camera frame to the

next, and triangulate the position of these landmarks using wheel

odometry. With this, a map is generated with a graph of the vehicle’s

poses (position and orientation) at image acquisition times, as well as

the landmark positions in 3D space. If necessary, loops are closed using

the matching‐based loop‐closure algorithm (Sattler, Leibe, & Kobbelt,

2011). Finally, both the poses of the vehicle and the positions of the

landmarks are jointly optimized in a bundle‐adjustment routine.

Further mapping sessions are added by first localizing the new

data set in an offline process against the pre‐existing map. This

generates both initial pose estimates for the vehicle in the new data

set and associations between features from the camera images of the

new data set and landmarks of the pre‐existing map. In addition, new

landmarks are spawned from features of the new data set that failed

to find a matching map landmark. Finally, the resulting multisession

map is optimized again with bundle adjustment. Note that all

information, that is, both the landmark positions and vehicle poses,

of all map sessions, is expressed in the same metric three‐
dimensional coordinate frame of reference, denoted by W .

3.2 | Localization

The aim of the localization module is to estimate the vehicle’s 6DoF

pose with respect to the map coordinate frame of reference W ,

given one or more camera images acquired at a specific point in time,

1As we demonstrate in Section A.2, our apperance‐based landmark selection algorithm is

agnostic to the type of local feature descriptor used. However, in practice, not every

descriptor may be equivalently well suited for building multisession maps, and the choice of

descriptor can further be restricted by computational constraints.
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and some rough prior knowledge about the current vehicle’s location.

We refer to this localization paradigm as local iterative localization,

in contrast to global localization or loop closure where no a priori

knowledge of the vehicle’s pose is available.

Let map V L E, ,≔ { } denote the map containing a set of vertices V

(robot’s poses), a set of landmarks’ positions L, and a set of edges E

capturing the observation relation between vertices and landmarks.

Let further B denote the vehicle body coordinate frame. Image

acquisitions occur repeatedly along a traversal through the mapped

area at a given frequency. Instead of referring to the time of image

acquisition, we enumerate them with index k , and refer to the set of

images recorded at the kth acquisition with Ik . With this, we can

formulate our local iterative localization problem as follows:

localize I map, , , .W B k W Bk k
¯ = ( ˆ ) (1)

with W Bk
¯ denoting the estimate of the vehicle’s pose expressed in the

map coordinate frame of reference. Analogously, W Bk
ˆ denotes the

rough prior guess of the same quantity. Using W Bk
ˆ , landmarks are

retrieved from the map that have been observed from near‐by, and
their respective 3D points are backprojected into the camera image

plane, where they are matched against the feature descriptors

extracted on the query images based on pixel and descriptor distance.

The refined pose estimate W Bk
̄ is calculated from solving a nonlinear

least‐squares optimization problem involving an image‐plane projec-

tion error constraint with a robust cost function for every keypoint‐
landmark match. Observations under a predefined backprojection

error are considered inliers of the localization iteration k , and the

respective landmarks form the set of observed landmarks kO . The prior

guess of the pose for the subsequent localization at iteration k 1+ is

readily obtained from forward propagating the previous pose estimate

with the use of wheel odometry:

.W B W B B B
odo

k k k k1 1
ˆ ≔ ¯

+ +
(2)

The main steps of the localization module are summarized in

Algorithm 1 in Section 4.

Note that the matching in image space between 2D features and 3D

landmarks requires an association of one feature descriptor for every

landmark in the map. For our experiments, we group all observations

associated with the same 3D point based on their association with the

respective rich session (see Section 3.3). For every group, we then

evaluate the one observation with the smallest accumulated descriptor

distance to all other descriptors of the same group, have the descriptor

of this observation, and, together with respective 3D point, form a

landmark used for selection and matching.

3.3 | Rich and observation sessions

In Section 3.1, we have described how a map can be enriched with

landmarks from multiple sessions by localizing a data set against the

map in an offline process. We refer to a data set added to a map in

this fashion as a rich session. Adding a rich session to a map extends

the appearance coverage of the map with the conditions present in

the respective data set. At the same time, however, the size of the

map, and the complexity and runtime of the optimization with bundle

adjustment are considerably increased.

In contrast to that, a data set can also be added to the map

without the addition of new landmarks. For this, the data set is

localized against the map, and the vertex poses along the trajectory

are added to the pose graph of the map, analogous to adding a rich

session. Instead of tracking and triangulating new landmarks,

however, only the relation between keypoints from the new data

set and observed pre‐existing map landmarks is registered. This

barely increases the size of the map and does not have an impact on

the complexity of bundle adjustment. Although this does not extend

the appearance coverage either, it increases the landmark co‐
observation statistics, which can be beneficial for the performance

of appearance‐based landmark selection. A data set added to the map

in this fashion is referred to as an observation session.

4 | APPEARANCE‐BASED LANDMARK
SELECTION

In this section, the selection of landmarks for localization based on

appearance is described in detail. After formally presenting the

problem at hand, we introduce a landmark ranking function used to

prioritize relevant landmarks for the selection process. We conclude

this section by relating our problem of appearance‐based landmark

selection to popular ranking schemes from information retrieval.

4.1 | Problem formulation

The goal of appearance‐based landmark selection is to decide which

of the landmarks in the map are likely to be seen under the present

appearance condition. In a generalized manner, this problem can be

formulated as follows:

S selectLandmarks f C n S C, , , , with ,k k k k= ( ) ⊆ (3)

where Ck denotes the set of geometrically visible candidate

landmarks, Sk denotes the set of selected landmarks, f refers to the

landmark ranking function, n to the number landmarks to select, and

the current appearance condition is expressed as . The ranking

function f maps a landmark l to a score, that is,

f l l C: 0, 1 ,k→ [ ] ∀ ∈ (4)

whereas a landmark is defined as three tuples:

l p d Z Z Z l L, , , with ,l l l l≔ ( ) ⊆ ∀ ∈

with pli denoting the 3D point expressed in the frame of reference

W , dl denoting the descriptor associated with landmark l, and Zl

denoting the set of map sessions in which the landmark was

observed. The set of all map sessions is denoted by Z .
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The set of selected landmarks Sk is formed by applying the ranking

function f to every landmark l Ck∈ , before selecting n top‐ranked
landmarks. In this study, we choose n to be relative to the number of

candidate landmarks available at iteration k , formally expressed as

follows:

U l C f l
n C U

0 ,

min , , with 0, 1 .
k k

k kα α

≔ { ∈ ∣ ( ) > }

≔ ( ∣ ∣ ∣ ∣) ∈ [ ]
(5)

Preselecting the candidate landmarks based on the condition

f l 0( ) > allows the ranking function to exclude certain landmarks

from being selected. This property is used by the ranking function

fMRS as described in Section 5.3. A visualization of this landmark

selection paradigm can be found in Figure 2.

In the following section, we elaborate in detail on how to find a

tangible expression for and propose a formulation for a ranking

function.

4.2 | The ranking function

The ranking function ought to reflect the probability of successfully

forming a match between a map landmark and a feature extracted from

the current set of images under the current appearance condition .

To motivate the formulation for our proposed appearance‐based
landmark ranking function, we introduce it from a probabilistic

perspective. We are thus interested in evaluating the following

quantity: P l( ∈ ∣ )O . This denotes the probability of observing

landmark l under the current appearance condition . By ranking

all candidate landmarks according to this probability, and selecting

some number of top‐ranked landmarks, we achieve our goal of

maximizing the number of observed landmarks.

4.2.1 | Ranking landmarks based on appearance
equivalence classes

Unfortunately, is an abstract, intangible entity and not directly

observable. However, as every traversal through the environment is

related to the particular appearance condition present during that

time, all available information regarding the probability of observing

landmark l under some appearance condition is encoded in the

map session observation relation of landmarks. That is, if li and lj were

observed in the same sessions, that is, Z Zl li j= , it can be assumed that

P l P l .i j( ∣ ) = ( ∣ ) (6)

This allows approximation by substituting the current appearance

condition by the respective set of map sessions a landmark has

been observed in, that is,

P l P l Z .l( ∈ ∣ ) ≈ ( ∈ ∣ )O O (7)

This renders the conditioning on the appearance condition tangible,

as the observing map session relations of landmarks are well‐defined
and countable. Note that we employ a common abuse of notation by

interpreting the expression P l Zl( ∈ ∣ )O as the probability of observing

landmark l, given it has been observed in the past in the map sessions

Zl. We can thus group all landmarks into distinct equivalence classes,

and model the observation likelihood with a simple Bernoulli

distribution, that is,

P l Z Ber l l L Z Z, with .l
l

j l ljθ( ∈ ∣ )~ ( ) [ ] ≔ { ∈ ∣ = }[ ]O (8)

It remains to estimate the appearance‐dependent parameters lθ[ ]. For

this, we employ the principle of local temporal stability of appearance

conditions: Whenever the mapped area is traversed, the appearance

conditions are expected to change along the route in the same

manner as they have in previous traversals. Following this principle,

we thus expect to again observe the same landmarks together with

those that have already in the past been co‐observed. This allows to

compute a maximum likelihood estimate for lθ[ ] using recently

selected and observed landmarks from previous localization itera-

tions. For this, we add subscript k to refer to localization iteration k ,

as described in Section 3.2:

P l l l
P l l l

P l l S

,
,k

l
o k o

o k o

o

k
l

k
l

1

1

θ = ( ∈ ∣ ∈ [ ]) =
( ∈ ∈ [ ])

( ∈ [ ])
≈
∣ ∣

∣ ∣

[ ] −
[ ]

−
[ ]

O
O O

(9)

with

l l l ,k
l

o k o1 1≔ { ∈ ∣ ∈ [ ]}−
[ ]

−O O (10)

S l S l l .k
l

s k s1 1≔ { ∈ ∣ ∈ [ ]}−
[ ]

−
(11)

We can interpret this quantity as the estimated relevance of

appearance equivalence class l[ ], based on recently collected statistical

samples. With a limited budget of landmarks to select, prioritizing the

selection according to this ranking function maximizes the number of

expected observed landmarks under the current appearance condition.

Note, however, that this statement of optimality only refers to the

selection of landmarks based on appearance. There are further

nonappearance related effects (e.g., geometry, occlusion, etc.) having

an impact on whether a landmark is observed or not.

F IGURE 2 Snapshot visualization of our landmark selection. The

thick colored lines depict the pose graph of the map, while the
candidate landmarks C are shown as black spheres, and selected
landmarks S as blue spheres. The turquoise lines indicate inlier

observations between the four cameras and some of the selected
landmarks after the pose refinement step [Color figure can be
viewed at wileyonlinelibrary.com]
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For our experiments, we use a temporal smoothing of lθ[ ] over the

N 50= most recent iterations and define our ranking function

accordingly:

f l
N
1

.AEC
w

N

k w
l

0

1

θ∑( ) ≔
=

−

−
[ ] (12)

4.3 | Relation to information retrieval

In this section, we relate our proposed appearance‐based landmark

ranking approach to common concepts in the field of information

retrieval. With this, we aim at providing further theoretical context

and facilitating the understanding and interpretation of the ranking

function described in Equation (12).

The principles of information retrieval are usually stated in a

linguistic context, where the overall goal is to retrieve a set of text

documents most relevant to a given search query consisting of a set

of query words (Salton & Buckley, 1988). Analogous to appearance‐
based landmark selection for visual localization, a ranking function

is required, which assigns a relevance score to each document in the

collection, according to how well the document matches the query

words. It has thereby proven to be most successful to take two

distinct aspects of relevance into consideration when assessing the

relevance of a query word to a document. The term frequency aspect

reflects how well a given query term represents the given

document, while the inverse document frequency aspect attempts to

reflect the overall discriminatory power of a word with respect to

the entire document collection. These two aspects form two

separate terms, whose product is assigned as the relevance weight

of a query word with respect to a document. The overall ranking

score can readily be computed either by summing over all relevance

weights, or by representing the relevance weights in vector form

and employing cosine similarity (Salton & Buckley, 1988). The result

is the well‐known tf‐idf ranking scheme. Drawing the analogy with

appearance‐based landmark selection, we can interpret recently

observed landmarks as the query. This allows expressing the

appearance‐based ranking function fAEC described in Equation (12)

as follows:

tf l l
l l

idf l S
S

,
1 if ,

0 otherwise,
,

1
,o

o
k

k
l1

1

( ) ≔ ⎧
⎨⎩

[ ] = [ ]
( ) ≔

∣ ∣
−

−
[ ]

(13)

f l tf l l idf l S, , .AEC
l

o o k 1

o

∑( ) = ( ) ( )− (14)

A unary term frequency only considers query landmark relevant if

they belong to the same appearance equivalence class. The inverse

document frequency term downweights contributions of landmarks if a

large quantity of landmarks from the same appearance equivalence

class have recently been selected. We note, however, that this

interpretation of the idf term deviates from the text‐book definition.

This is because in the context of appearance‐based landmark

selection, we are rather interested in weighting the query words in

relation to the set of recently selected landmarks, as opposed to the

set of candidate landmarks. We further note that there are countless

variations in how to formulate tf and idf terms to achieve optimal

retrieval performance in a given application (Aizawa, 2003; Salton &

Buckley, 1988). In Section 5.3, we introduce further sensible

formulations that we compare against in our experiments.

Algorithm 1 Iterative local localization. The retrieval of nearby

vertices from the pose‐graph employs a distance δ and yaw

angle discrepancy ϕ around the pose guess W Bk
ˆ .

1: functionLOCALIZE(I map, , ,k W B k 1k
ˆ

−O )

2: K← extractFeatures(Ik)

3: Vk← retrieveNearbyVertices( map, , ,W Bk δ ϕ
ˆ )

4: Ck← getLandmarksObservedFromVertices(V map,k )

5: Sk← selectLandmarks(C f, ,k k 1−O )

6: M← match2D3D(K S, k)

7: ,W B kk
̄ O ← estimatePose(M, W Bk

ˆ )

8: end function

An overview of the localization with appearance‐based landmark

selection in pseudocode can be seen in Algorithm 1.

5 | EVALUATION

In this section, we present the results of our evaluation, focusing on

(a) demonstrating the effectiveness of selecting landmarks using the

appearance‐based ranking function presented in Section 4.2 in

multiple challenging long‐term outdoor environments, (b) comparing

our proposed ranking function with related popular ranking schemes,

(c) reporting on the resulting localization precision and accuracy, and

(d) analyzing the computational performance of the respective

localization algorithm.

To facilitate the navigation within and reading of this section, we

first present a concise summary of the conducted experiments.

Subsequently, the data set collections, respective sensor configura-

tions, and evaluation metrics are introduced, before the various

experiments are presented in detail. A paragraph containing our key

findings concludes the evaluation section.

Please note that a direct comparison of our appearance‐based
landmark selection performance with the most related works

(Linegar et al., 2015; Mactavish et al., 2017) is inherently difficult,

as the underlying mapping framework and visual feature representa-

tions are fundamentally different, and the selection of relevant data

on the level of individual landmarks constitutes a unique feature of

our method. With the ranking function fMRS , as introduced in Section

5.3, we aim at comparing our method with the performance that is to

be expected with an “experience‐based” mapping framework, which

BÜRKI ET AL. | 1047



creates and maintains separate maps for each map session. In

addition to that, comparisons of the localization performance with

selecting landmarks randomly, and with the localization performance

using all landmarks, serve as lower and upper bounds for properly

assessing the effectiveness of our proposed landmark selection on

the one hand, and the extent of saving mobile network bandwidth on

the other hand. We further assess and compare the selection

performance with various ranking schemes inspired by the tf‐idf

concept in information retrieval.

To keep the evaluation section as concise as possible, we prefer

to present metrics aggregated over all data sets of the respective

data set collection. However, the interested reader is kindly invited

to study the graphs showing the performance on each data set

separately in Section A.1.

5.1 | Experiments overview

Our experiments can be divided into four groups as follows.

5.1.1 | Rich sessions only

We first investigate the effectiveness of the proposed appearance‐
based landmark selection and the resulting localization precision with

maps containing only rich sessions. This allows us to restrict the

landmark selection to select from at most one rich session at any

localization iteration along the trajectory with the ranking function

fMRS , as described in Section 5.3. It corresponds to the localization

performance attainable with mapping frameworks that keep separate

maps for every session, such as the Experience‐Based mapping

framework by Churchill and Newman (2013). In reverse, it shows the

benefit in localization precision achievable in a multisession mapping

framework as the one used for this study, which expresses all

landmarks from all sessions in a common reference coordinate frame

and thus allows selecting landmarks from more than one rich session

at the same time. The respective experiments can be found in

Section 5.5 (Figures 4 and 5).

5.1.2 | Observation sessions

With the presence of observation sessions, the selection performance of

different appearance‐based landmark ranking functions exhibit more

pronounced variance. Therefore, the experiments in this section aim at

analyzing these differences in performance and relate them to the

varying environmental conditions. Note that since observation sessions

span across multiple rich sessions, the ranking function fMRS is no longer

properly defined and is thus not included in these experiments. The

experiments can be found in Section 5.6 (Figures 6–8).

5.1.3 | Localization accuracy

The NCLT data set collection provides ground‐truth pose estimates.

This allows us to evaluate the localization accuracy along the

trajectories of all NCLT data sets. Apart from yielding an absolute

estimate of the localization accuracy achieved by the different

selection policies and landmark ranking functions, we can further

investigate and validate the relation between the localization

accuracy and other performance influencing metrics such as the

distance from the map trajectories, or the number of observed

landmarks. The respective experiments can be found in Section 5.7,

and Table 1. Furthermore, two special phenomena are analyzed in

detail in two case studies in Figures 9–11.

5.1.4 | Computational performance analysis

The potential to significantly reduce the computational requirements

on the vehicle side constitutes—apart from a reduction in mobile

network bandwidth consumption—a second strong incentive to

employ the proposed appearance‐based landmark selection. To

support this claim, we have measured and analyzed the computa-

tional costs involved for the different components of our visual

localization pipeline, both with, and without appearance‐based
landmark selection. The respective results are presented in

Section 5.8 and Figure 12.

5.2 | Data set collections

The selection of data sets for evaluating the performance of the

proposed appearance‐based landmark selection has been driven by

the following main criteria: (a) The data set collection ought to cover

a wide range of varying appearance conditions, with still sufficient

appearance overlap allowing to build a multisession map. (b) The

sensor setup must include an odometry sensor, which we require for

the forward propagation of the pose states in our iterative

localization pipeline. (c) Ideally, the data set collection offers

ground‐truth poses, which enable an evaluation of the localization

accuracy. Many popular publicly available data set collections fail to

meet these criteria. With the NCLT data sets, however, there exists a

data set collections offering all features relevant for us. Furthermore,

the appearance conditions covered by the NCLT data sets are diverse

and very challenging, with changing weather conditions, often a

setting sun, or strong shadows in the field of view. They thus provide

an ideal settings for putting the different appearance‐based landmark

ranking functions through their paces.

We extend the evaluation with two self‐collected data sets,

named parking‐lot and city environment. Similar to the NCLT data sets,

the parking‐lot data sets cover long‐term appearance change during

daytime. The respective sensor setup and platform dynamics differ,

however, which adds further variation to the evaluation scenarios. In

contrast to the NCLT and parking‐lot data sets, the city environment

data sets cover a very specific scenario of appearance change, namely

that of the change from daytime to nighttime.

5.2.1 | NCLT

In The University of Michigan North Campus long‐term vision and LIDAR

data sets (Carlevaris‐Bianco, Ushani, & Eustice, 2016), a Ladybug 3
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camera is used, together with wheel odometry from the Segway

platform. All images are undistorted and downscaled to dimensions

of 808 px × 616 px to be comparable in resolution to the images

recorded in the parking‐lot and city environment collection respec-

tively. The 27 data sets from the NCLT collection were recorded

between January 2012 and April 2013 on the north campus of the

Michigan University in Ann‐Arbor. The route and direction of

traversal followed during the individual recordings, however, varies

considerably between the different data sets. For the purpose of this

evaluation, we have extracted an approximately 750m long segment

of the routes that has been traversed in all data sets, except the one

recorded on January 10, 2013. Furthermore, the data set from

December 1, 2012 has been excluded from the evaluation since it

comprises the only nighttime recording. Due to a lack of any

recordings from transitioning conditions at dusk or dawn, it is not

possible to extend the appearance coverage of the map to an extent

that would allow proper localization at nighttime. The traversing

direction of all the remaining data sets is the same, except for the

recordings from February 4, 2012, November 4, 2012, and February

23, 2013 which traverse the mapped area in opposite direction.

These data sets can be successfully localized, even though the

respective precision and accuracy are worse compared to the other

data sets.

5.2.2 | Parking‐lot

The parking‐lot data sets cover a circular traversals of a car on a open

space parking‐lot. A total of 28 data sets recorded between August

2013 and July 2014 cover a vast variety of different weather and

seasonal conditions during daytime. Among others, they include low‐
standing sun, rain and wet snow, as well as scattered clouds and clear

skies.

5.2.3 | City environment

To cover the extreme change in appearance from daytime to

nighttime, 23 drivings in a city environment have been recorded

during the course of a day, starting around noon, and ending

around 6 p.m. in the evening. While the weather condition across

these data sets remains static, illumination undergoes drastic

change from diffuse daylight to nighttime with artificial street

lighting.

The sensor setup used in the parking‐lot and city environment data

sets consists of four fish‐eye cameras mounted on a car (facing front,

left, rear and right), and wheel odometry. Images are recorded at

12.5 Hz in gray scale at a resolution of 640 px × 400 px.

An overview over the weather conditions, the usage of each data

set in the corresponding multisession maps, as well as example

images for all three data set collections can be found in Tables

A1–A3. More sample images of the parking‐lot data sets can be found

in Mühlfellner et al. (2016) and in Carlevaris‐Bianco et al. (2016) for

the NCLT data sets.

5.3 | Ranking functions

Before presenting the metrics and experimental results, we introduce

additional ranking functions used for comparison and as baselines in

the evaluation.

We employ localization with the following pseudoranking

function and selection fraction 1.0α = as a baseline to evaluate

the performance of our proposed appearance‐based ranking func-

tions:

f l l C1 , 1.0.0 α( ) ≔ ∀ ∈ = (15)

This corresponds to using all landmarks in the candidate set C for

localization, and in general serves as an upper bound for the

performance of any other ranking function with 1.0α < .

As a lower bound for the performance of landmark selection, we

further compare against selecting landmarks randomly:

f l v v, 0, 1 .random ( ) ≔ ~ [ ]U (16)

In addition to that, we also compare the performance of the

appearance‐based ranking functions introduced in Section 4.2 to the

performance of the following ranking function:

f l
p l p l1 if max ,

0 otherwise.
MRS i

i
l( ) ≔

⎧

⎨
⎩

([ ]∣ ) = ( ([ ]∣ )
[ ] (17)

This ranking function selects at most n Cα= ∣ ∣ landmarks observed

from the rich session with currently the best conformity with the

encountered appearance condition. While switching the selection

of landmarks from one rich session to another is allowed along the

traversal, selecting landmarks from more than one rich session for

a specific localization iteration is prohibited. It thus demonstrates

the localization performance attainable with separate maps from

each rich session, in contrast to having all landmarks and observer

vertices expressed in one common coordinate frame of reference.

We further include the following appearance‐based ranking

functions introduced in Bürki et al. (2016) in our comparison:

f l
Z
1

,NCV
l z Z

k
z

1

l

∑( ) ≔
∣ ∣

∣ ∣
∈

−O (18)

with

l z Z .k
z

k l1 1≔ { ∈ ∣ ∈ }− −O O (19)

It corresponds to a normalized voting‐based ranking. Every landmark

observed in the previous localization iteration casts a vote for each of

its observing sessions. To prevent landmarks observed from multiple

map sessions to always dominate over landmarks observed from

fewer or only one map session, the accumulated votes are normalized

by the number of map observer sessions.

In addition to that, we compare our proposed appearance‐based
ranking functions with different variations of the tf‐idf ranking

scheme used in information retrieval.
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The ranking function fAV uses a vector space representation for

landmarks with a binary tf term representing the observing map

session relation. A cosine similarity metric is used as the ranking

score.

Ranking function fTfIdfA follows an analogy with text document

retrieval where landmarks are interpreted as documents containing

words in the form of observing map sessions. The multiset of query

words is built from all observing map sessions from the set of

recently observed landmarks. Further, a standard inverse document

frequency term is used, downweighting the contribution of map

sessions frequently present in the observing map sessions of the

candidate landmarks.

In contrast to fTfIdfA, the ranking function fTfIdfB first attempts to rank

map sessions, instead of directly ranking landmarks. For this, roles

are switched, and map sessions are interpreted as documents,

containing words in the form of landmarks observed in the respective

session. The set of recently observed landmarks k 1−O forms the set of

query words, upon which the map sessions are ranked, following a

standard tf‐idf scheme. The ranking score for a candidate landmark is

eventually formed as the sum of the respective observing session

relevances.

Ranking function fWRS is defined similar to fAEC , evaluates, however, the

relevances of individual map sessions r z( ), instead of appearance

equivalence classes. Analogous to fTfIdfB, a sum over all observing session

relevances is used as the final ranking score of a candidate landmark.

5.4 | Metrics

An informative measure for the quality of the ranking function is the

comparison between the number of observed landmarks using only

some percentage of selected landmarks, and the number of observed

landmarks using all landmarks for localization at a given iteration k .

This ratio is denoted rk
obs and formally defined as follows:

r .k
k
f

k
f

obs
,

, 1.00

α

α
≔

∣ ∣

∣ ∣=

O

O
(20)

An ideal ranking function f achieves an observation ratio rk
obs

close to 1.0 with a selection fraction α as low as possible. This would

indicate that only landmarks currently observable receive a high

score and are selected, whereas unobservable landmarks receive a

low score and are discarded.

The NCLT data set collection provides ground‐truth poses based on

fused and globally optimized pose estimates computed from the 3D

LiDAR scans and the differential GPS sensor measurements. We make

use of this to evaluate the accuracy of the localized poses within a local

neighborhood of the map (Burgard et al., 2009). For every localization

iteration along a traversal of a data set, we compare the transformation

between the pose resulting from solving our visual localization

optimization problem, W Bk
̄ , and the pose of the nearest vertex in

the map, W nnVk , with the transformation between the ground‐truth
pose for the current image, GBk , and the ground‐truth pose of the same

nearest vertex in the map, GnnVk . This results in the following

formulation for the local‐error transformation:

,nnVB
W

W nnV W B
1

k k k= ̄− (21)
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,nnVB
G

GnnV GB
1

k k k= − (22)

.LEGT nnVBk
W

nnVBk
G1

k ≔
− (23)

All involved transformations are schematically depicted in Figure 3.

Apart from the inaccuracy of the visual localization, there are

further sources of errors affecting LEGT , such as (a) inherent

inaccuracies of the ground‐truth transformations, (b) time synchro-

nization, (c) sensor intrinsics and extrinsics calibration, (d) scale and

space distortions between the two involved coordinate systems W

and G , and (e) inconsistencies in the pose graph of the visual map.

The effect of the distortion between the involved coordinate systems

is almost entirely mitigated by employing local errors as described

above. To eliminate any errors due to inconsistencies in the pose

graph of the visual map, we optimize the poses of the NCLT maps

with an additional prior constraint linked to the ground‐truth
transformation closest in time. The inherent inaccuracies of the

ground‐truth solution are expected to be considerably lower than the

localization accuracies from the visual localization system, as the

former is computed from a globally optimized SLAM solution using

the 3D LiDAR scans and differential GPS, with all data sets cross‐
registered, and a manual removal of wrong loop‐closure constraints

(Carlevaris‐Bianco et al., 2016). As a consequence, we expect LEGT to

reflect primarily the (in‐)accuracy of the visual localization.

The local‐error transformation LEGTk is further decomposed into

the corresponding three‐dimensional translation and rotation vector,

denoted by pLEGTk , and aLEGTk respectively.

In the cases of the parking‐lot and city environment data sets, no

ground‐truth solution is available. Since in each localization iteration,

a visual‐only pose optimization problem is solved (see Section 3.2) we

can still assess how well the resulting pose estimate is constrained

along a data set by computing statistics on the transformations

between the pose estimates, and the respective pose guess of the

same iteration:

.LEO W B W B
1

k k k≔ ˆ ̄−
(24)

We refer to this as localization precision, as opposed to localization

accuracy as described in Equation (23). In addition to the error

induced by the visual localization itself on the current and previous

pose estimate, the local‐error transformation LEOk also contains the

local drift of the wheel odometry in between. However, the latter is

expected to be at least one magnitude smaller, leaving the magnitude

of LEOk to be dominated by the visual localization errors.

5.5 | Rich sessions only

We first present the ratios of observed and selected landmarks, as

well as the precision results, for all three data set collections,

whereas the presented values are aggregated over all data sets of the

respective collection.

In Figure 4, the relation of observed versus selected landmarks is

shown for selection fractions between 10% and 40%. Since there is a

significant discrepancy in the observation percentage during daytime

as opposed to at night, we further show the observation percentage

in the city environment aggregated over daytime data sets, that is, up

and including 17:30, and over the remaining nighttime data sets,

separately. In addition to that, Figure 5 shows a comparison of the

localization precision.

Note that in this scenario with a map containing only rich sessions,

it is straightforward to see that the ranking score with the

appearance‐based ranking functions fAEC , fWRS , fAV , and fTfIdfB is

identical. We therefore only show the results for the ranking

function fAEC . In all three environments, ranking landmarks with to

fAEC yields a consistently high observation percentage, and localiza-

tion precision close to the one achieved using all landmarks. In

contrast to that, ranking landmarks using fTfIdfA fails, as it yields a

consistently lower observation percentage than random selection,

and precision values considerably worse than the other ranking

F IGURE 3 The two coordinate systems

WF and GF and all relevant

transformations used for the calculation of
the local localization precision with respect

to the wheel odometry, and the local
localization accuracy with respect to the
ground‐truth solution [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 4 The average observation percentage robs in relation to the selection fraction α for different choices of ranking functions, and for
all three data set collections against maps containing only rich sessions. In the city environment, data sets are further split up into daytime data

sets (up until 17:30), and nighttime data sets [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 The aggregated localization translation precision for all three data set collection against the map containing only rich sessions. The
following ranking functions are shown: localization using all landmarks, f0, 1.0α = , appearance‐based landmark selection with fAEC , fTfIdfA, fMRS ,

and random selection with frandom, all with a selection fraction of 0.2α = [Color figure can be viewed at wileyonlinelibrary.com]
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functions. The idf term of fTfIdfA follows the text‐book definition of

inverse document frequency, thus downweighting the influence of map

sessions if there are many candidate landmarks observed in the

respective session. As described in Section 4.3, this criteria does not

well reflect the appearance conformity of a landmark, and instead

tends to favor map sessions with only few landmarks.

We further note the performance limitations of fMRS . With low

selection fractions, the attained observation percentage is on the

same level as other well‐performing ranking functions, such as fAEC ,

fAV , and fTfIdfB. However, the restriction to only select from one rich

session results in performance saturation for larger selection

fractions. The respective loss in precision is clearly visible in case

on the NCLT and parking‐lot data sets at a selection fraction of 20%,

and demonstrates one of the benefits of having all landmarks, even

from multiple rich sessions, registered in one common coordinate

frame of reference. Note that this loss in precision is less pronounced

on the city environment data sets, as in this case, there are only few

different appearance conditions represented in the map, with a clear

best‐matching rich session at any time.

It can further be observed that the overall observation

percentage and localization precision in the NCLT environment is

lower as compared to the parking‐lot, despite both environments

reflecting long‐term daytime conditions. This discrepancy suggests

that there is a larger difference in encountered appearances over the

year in relation to the number of rich sessions in the map in the NCLT

scenario as compared to the parking‐lot scenario. Precision in the

NCLT environment further pays tribute to the fact that the

trajectories in the NCLT data sets often do not follow the exact

same route and exhibit lateral offsets of up to 12m. This renders the

visual localization considerably more challenging as opposed to the

parking‐lot scenario, where there is a quite precisely repeated driving

pattern on the parking‐lot.
In the city environment, the comparatively low observation

percentage is attributed to the fact that there are fewer diverse

appearance conditions covered, resulting in a lower number of

rich sessions present in the map. During daytime, where there are

considerably more landmarks than at dusk and nighttime, even a

selection fraction of up to 40% may not be sufficient to select all

landmarks matching the current appearance condition. This

effect is supported by the graph in Figure 4 showing the

observation percentage aggregated separately over daytime

and nighttime data sets. All ranking functions, including random

selection, exhibit a significantly higher observation percentage at

night as opposed to during daytime. The increase at night is,

however, most pronounced for the appearance‐based ranking

functions fAEC and fMRS .

5.6 | Observation sessions

Adding observation sessions to the map can further improve the

performance of the appearance‐based landmark selection at a

negligible additional map storage or computational burden.

It can be seen in Figures 6 and 7 that for low selection fractions,

the best observation percentage and localization precision is

achieved using the proposed fAEC ranking function. In addition to

that, ranking functions fAV and fTfIdfB also achieve favorable

performance for low selection fractions, and even achieve the best

observation percentage on the NCLT and parking‐lot data sets for

higher selection fractions. We attribute this phenomena to saturation

effects with higher selection fractions on the one hand, and to data

set specific artifacts, such as the lock‐in effect discussed in Section 5.7

on the other hand. Both may undermine the theoretical optimality of

fAEC under ideal conditions.

In addition to that, the ranking function fNCV exhibits the

highest variance in performance. As can be seen in Figures 6, and

8, this ranking function fails during daytime, yielding an observa-

tion percentage worse than that of random selection. It further

performs poorly in general for low selection fractions on the other

two data set collections too. However, for high selection fractions,

the opposite is the case, and appearance‐based landmark selection

with fNCV achieves the best performance on the NCLT and parking‐

lot data sets.

We further observe ranking functions fAV and fTfIdfB perform very

similarly in all three environments. This is remarkable, as the respective

expressions of the ranking functions are considerably different.

Similar as with maps containing only rich sessions, the ranking

function fWRS outperforms random selection, but falls short of any of

the before mentioned appearance‐based ranking functions. The

presence of observation sessions further is not able to improve the

poor performance of fTfIdfA.

The benefit of ranking based on appearance equivalence classes

is most pronounced in the city environment at dusk around 17:25, as

can be seen in Figure 8. Despite this being only one data set, it is

exemplary for a general phenomena: The heavy bias in the number of

landmarks towards daytime rich sessions lets most other ranking

functions preferably select landmarks from daytime. However,

nighttime landmarks would, although fewer in absolute numbers,

already yield more inlier observations relative to the number of

selected nighttime landmarks. Only the two ranking functions fAEC

and fWRS are able to exploit this and achieve almost 20% more

landmark observations in this case. The ranking function fWRS ,

however, suffers from suboptimal performance during daytime,

leaving the ranking function based on appearance equivalence

classes as the only one with high observation percentage all the time.

Before elaborating on the localization accuracy evaluation in the

subsequent section, we summarize the key findings of the different

ranking function’s performance. On all three data set collections, a

significant boost in observation percentage by the use of observation

sessions is well visible. In addition to that, the ranking function fAEC

exhibits the best performance at low selection fractions, while the

performance of fNCV is most susceptible to the selection fraction,

performing poorly for low selection fractions, but even outperform-

ing all other ranking functions by a small margin at a selection

fraction of 40%.
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F IGURE 6 The average observation percentage robs in relation to the selection fraction α for different choices of ranking functions, and for
all three data set collections against maps containing observation sessions. In the city environment, data sets are further split up into daytime data
sets (up until 17:30), and nighttime data sets [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 The aggregated localization translation precision for all three data set collection against the map containing observation sessions.

The following ranking functions are shown: localization using all landmarks, f0, 1.0α = , appearance‐based landmark selection with fAEC , fAV , fTfIdfB,

fNCV , fTfIdfA, and random selection with frandom, all with a selection fraction of 0.1α = [Color figure can be viewed at wileyonlinelibrary.com]
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5.7 | Localization accuracy

In this section, we present the visual localization accuracy results of

the NCLT data sets using the ground‐truth solution based on 3D

LiDAR and differential GPS as a reference.

The median errors in translation of LEGT , denoted by pLEGT , are

listed in Table 1 for localization using all landmarks, f0, as well as

appearance‐based selection with the ranking functions fAEC , fNCV , fMRS ,

and random selection, frandom; all with a selection fraction of 10%.

Furthermore, the translation accuracy using the ranking function fAEC

is listed both when localizing against the map containing only rich

sessions, as well as when localizing against the map containing both

rich sessions and observation sessions. For the latter, the ranking

function is denoted by “fAEC os.”

F IGURE 8 The average observation

percentage robs for different choices of
ranking functions and a selection fraction

0.1α = , for all data sets of the city

environment against the map containing
observation sessions [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 The translation localization accuracy for the NCLT data sets, using the ground‐truth poses as a reference

Median p mLEGT[ ], 0.1α =

Date f 1.00(α = ) fAEC fAEC, os. fNCV fMRS frandom

January 8, 2012 0.155 0.2 0.181 0.2 0.206 0.247

January 15, 2012 0.215 0.317 0.35 0.363 0.329

February 2, 2012 0.14 0.196 0.145 0.222 0.203 0.187

February 12, 2012 0.179 0.263 0.211 0.268 0.266 0.3

February 18, 2012 0.18 0.247 0.182 0.28 0.287 0.268

February 19, 2012 0.129 0.191 0.215 0.211 0.191

March 17, 2012 0.129 0.196 0.155 0.235 0.204 0.212

March 25, 2012 0.265 0.304 0.271 0.301 0.294 0.329

March 31, 2012 0.112 0.189 0.197 0.196 0.163

April 29, 2012 0.141 0.196 0.161 0.202 0.203 0.216

May 26, 2012 0.121 0.151 0.135 0.154 0.161 0.181

August 4, 2012 0.139 0.159 0.157 0.16 0.158 0.233

September 28, 2012 0.124 0.18 0.149 0.259 0.194 0.202

October 28, 2012 0.138 0.201 0.251 0.236 0.219

November 4, 2012 0.308 0.396 0.363 0.458 2.282 0.41

November 17, 2012 0.174 0.215 0.185 0.219 0.24 0.253

February 23, 2013 0.445 0.485 0.544 0.524 0.477

April 5, 2013 0.168 0.225 0.188 0.218 0.237 0.253

Note. The columns show the translation median error in meters for the following six ranking functions: localization using all landmark (f , 1.00 α = ),

appearance‐based landmark selection with fAEC , fNCV , and fMRS , and random selection with frandom. For appearance‐based and random selection, a selection

fraction 0.1α = is used. All ranking function localize against the map containing only rich sessions, except for f os, .AEC which localizes against the map

containing both rich sessions and observation sessions.

The bold values mark the minimum in each row, which corresponds to the ranking function achieving the lowest median translation error.
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We first note that the median translation accuracy of the

reference localization using all landmarks exhibits a rather large

span, ranging from 11 up to 44 cm. This is on the one hand due to the

varying trajectories of the respective data sets. On the other hand,

not every appearance condition encountered in the data sets used

for evaluation is equally well covered by the rich sessions in the map,

resulting in differing visual localization performance. The most

important factor for deteriorated localization performance, however,

is the direction of traversal, resulting in the data sets from November

4, 2012 and February 23, 2013 to perform considerably worse than

any other data set.

We further observe that the accuracy using the appearance‐
based ranking function fAEC on the map containing only rich sessions

slightly outperforms selecting landmarks based on fNCV , but both

perform significantly better than using fMRS for landmark selection.

This again demonstrates the gain in performance due to the ability to

select landmarks from more than one rich session at a time.

In addition to that, there is a clearly pronounced boost in

localization accuracy when using the map with additional observation

sessions for localization, with landmark selection based on fAEC even

achieving accuracy values close to those of the reference localization

using all landmarks for certain data sets.

It is noticeable, however, that random selection often achieves

accuracy values close to those of appearance‐based selection, at least

in the case of using the map with no observation sessions. In this

regard, we notice that the random selection of landmarks occurs for

every localization iteration along the trajectory. Despite only

selecting 10% at each iteration, even after short traversals of a few

meters, almost all landmarks available in the vicinity of the respective

map segment have been selected at least once by frandom. This effect is

well visible in Figure 9 which displays the total number of selected

landmarks for each of the different ranking functions and selection

policies. While all appearance‐based ranking functions only select a

fraction of all landmarks across the entire data set trajectory

approximately equal to the selection fraction at each iteration of

10%, random selection selects up 85% of all landmarks in the map.

For this reason, localization using random selection may be

considerably less precise, but its accuracy is not in the same extent

worse compared to both appearance‐based landmark selection and

localization using all landmarks.

In addition to that, the challenging route selection of the NCLT

data sets lead to varying localization performance along a trajectory

of a specific data set. Even though the influence of outliers in the

localization performance on the overall accuracy is limited by our

choice of the median error, the magnitude of the latter is often still

heavily influenced by short segments of the trajectory with very poor

localization performance. To render these effects more tangible, we

investigate the localization accuracy in relation to the number of

observed landmarks and the distance to the nearest vertex in the

map in detail for the two data sets of January 8, 2012 and February

2, 2012.

F IGURE 9 The total percentage of unique landmarks selected
over the coarse of the entire trajectory of a data set. This percentage
directly conforms to the overall savings in data transmissions

between a map backend and a mobile robot in a shared‐map
scenario. While appearance‐based selection only uses a percentage
of landmarks approximately equivalent to the respective selection

fraction in each iteration, random selection makes use of almost all
landmarks at least once along the trajectory [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 10 Bird’s eye perspective onto the mapped segment of the NCLT scenario, together with a temporal analysis of the number of

observed landmarks, the translation localization accuracy, and the distance to the nearest vertex in the map, referred to as “distance to map.”
On the left‐hand side, the trajectories of the richsessions in the map are drawn in light gray, while the localized poses of the data set from
January 8, 2012 is drawn in color indicating the number of observed landmarks along the route. Two particular situations along the trajectory of
this data set are marked by capital letters “A” and “B” and analyzed in detail in Section 5.7 [Color figure can be viewed at wileyonlinelibrary.com]
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The left‐hand side of Figure 10 shows a birds‐eye perspective of

the mapped segment used in the NCLT scenario. The trajectories of

the rich sessions present in the map are drawn in gray, whereas the

trajectory of the data set being localized from January 8, 2012 is

drawn in color indicating the number of landmark observations along

the trajectory. In contrast to that, the bottom half depicts the

relation between time—or iteration index respectively—on the one

hand, and the number of observed landmarks, the localization

accuracy, and the distance to the nearest vertex in the map on the

other hand.

The trajectories from all rich sessions in the map follow up and down a

long aisle between iteration 300 and 900. While the trajectory from

January 8 in general follows the same pattern, the turning point at the

back of the aisle occurs a few meters farther into the aisle compared to

the trajectories present in the map. This situation is marked with the

letter “A” in Figure 10. While the distance to the nearest vertex in the

map suddenly increases from approximately 30 cm up to almost 3m, the

number of observed landmarks drops to almost zero. At the same time,

the localization accuracy is greatly reduced, both in case of the reference

localization with f0, as well as and considerably more severely in the case

of appearance‐based localization. In this regard, situation “A” also serves

as a good example for the strong correlation between the number of

observed landmarks and the localization precision and accuracy

respectively.

In situation “B,” the number of observed landmarks is only slightly

lower than in the preceding trajectory segment. The distance to the

map, however, is considerably increased, since the trajectory of the

data set travels along the street instead of on the parallel sidewalk as

in all the rich sessions in the map. This again results in a peak

degradation of the localization accuracy and demonstrates the

correlation between the distance to the map, and the localization

performance.

The data set from February 2 exhibits even slightly lower

localization accuracy with the map containing only rich sessions for

appearance‐based landmark selection with fAEC compared to per-

forming random selection with frandom. As can be seen in Figure 11,

the errors in localization are mainly attributed to two peaks, again

marked with a capital letter “A” and “B.”

In situation “A,” the trajectory from February 2 directly crosses

the street, while all the data sets used for building the map take a

right turn up and down the aisle. This leads to a sudden increase in

the distance to the nearest vertex in the map, and as a result of that a

simultaneous drop in the number of observed landmarks and the

respective localization accuracy.

In contrast to that, the peak drop in localization accuracy in

situation “B” originates from a lock‐in effect inherent to the presented

appearance‐based landmark selection. To understand the cause of this

peak drop, we point out that the relevance of the different appearance

equivalence classes is evaluated based on recently observed landmarks.

The latter themselves are a subset of recently selected landmarks. This

does not constitute a problem as long as the availability of landmarks

from all rich sessions in the map along the trajectory is maintained, and

the appearance conditions encountered do not show any abrupt change

that is not also reflected in the respective rich or observation sessions. In

the NCLT scenario, however, the trajectory segment between iteration

600 and 1100 is characterized by the different data sets taking varying

routes. Thus, the rich session with the best appearance conformity may

at once exhibit a large lateral offset, or not be available at all

temporarily, resulting in the number of observed landmarks to decrease

and the localization accuracy to drop. To recover from this lock‐in

situation, the appearance‐based landmark selection can be “reset.” For

this, all candidate landmark are used for localization of a single iteration,

allowing to properly re‐evaluate the relevance of all available

appearance equivalence classes. For the presented experiments, such

a “reset” is set to occur at every 100th iteration, and its effect is clearly

visible in situation “B”: After the “reset,” the number of inliers swiftly

increases from approximately 20 up to 100, and the respective

localization accuracy recovers. In practice, it is advisable to link the

F IGURE 11 Bird’s eye perspective onto the mapped segment of the NCLT scenario, together with a temporal analysis of the number of

observed landmarks, the translation localization accuracy, and the distance to the nearest vertex in the map, referred to as “distance to map.”
On the left‐hand side, the trajectories of the richsessions in the map are drawn in light gray, while the localized poses of the data set from
February 2, 2012 is drawn in color indicating the number of observed landmarks along the route. Two particular situations along the trajectory

of this data set are marked by capital letters “A” and “B” and analyzed in detail in Section 5.7 [Color figure can be viewed at
wileyonlinelibrary.com]
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triggering of “resets” to a metric reflecting the condition of poor

localization performance in situations where localization is expected to

perform reasonably well (e.g., when the assumed location is close to the

mapped trajectories). Such a metric is, however, application and use‐
case specific.

Apart from the exemplary situations mentioned and discussed in

detail above causing the localization accuracy to degrade, Figures 10

and 11 also indicate that under normal circumstances, that is, with

the localized trajectory and all map sessions following the same route,

a localization accuracy of around 10 cm is achieved, which is in

accordance with the results found in Mühlfellner et al., (2016).

5.8 | Computational performance analysis

We conclude the evaluation section by analyzing the computational

time spent on the major blocks of our localization pipeline. All

computations have been carried out on a Lenovo W530 with an Intel

i7 CPU, and without the use a graphics processing unit. In addition to

the incentive of lower data bandwidth usage, the computational

performance analysis reveals a second benefit of appearance‐based
landmark selection in the form of reduced computational demands on

the mobile platform side.

Figure 12 shows the execution times of the following building

blocks:

• Feature tracking: The time to extract keypoints and compute

FREAK descriptors on all involved cameras.

• Landmark retrieval: The time to retrieve all near‐by pose‐graph
vertices, and their observed landmarks.

• Landmark ranking: The time to apply f on all candidate landmarks.

• Landmark selection: The time to select n top‐ranked candidate

landmarks, yielding Sk .

• Landmark backprojection: This step involves the look‐up of the

landmark descriptor for each selected landmark, and the back-

projection of the landmark’s 3D point into the camera image

planes, using the pose guess W Bk
ˆ .

• 2D–3D matching: The formation of associations between the

FREAK features in the current camera images, and the back-

projected map landmarks.

• Pose estimation: Refinement of the pose estimation employing a

nonlinear least‐squares optimization problem, yielding W Bk
̄ .

Apart from the feature tracking, the overall execution times in

the city environment are by more than a Factor 2 lower. This is due to

the fact that there are only four rich sessions in the map, with only one

from bright daylight. Thus, the resulting number of candidate

landmarks being retrieved in each iteration is considerably lower as

compared to the NCLT data sets.

We further note that the feature tracking, the landmark retrieval,

and the pose estimation step all have to be carried out both in case of

localization with, as well as without appearance‐based landmark

selection, and that their running time is mostly independent of the

number of selected landmarks. Nevertheless, these blocks are

included in Figure 12 to give a comprehensive overview over the

running time and real‐time capability of the localization pipeline.

The computational differences between localization with and

without appearance‐based landmark selection can be summarized as

follows: In contrast to localization without landmark selection,

localization with landmark selection has to invest time in ranking

and sorting the candidate landmarks. In exchange, however,

considerably fewer landmarks have to be backprojected and matched

against the features in the image, reducing the runtime of these

modules in relation to the respective selection fraction. As can be

seen in Figure 12, in both scenarios, even with a selection fraction of

F IGURE 12 The execution times of the individual building blocks of our localization pipeline, including the modules specific to appearance‐
based landmark selection. While the overall execution times vary in the different scenarios, in all cases localization with appearance‐based
landmark selection is able to perform significantly faster compared to localization without landmark selection. This is due to the fact that the
time invested into landmark ranking and sorting is more than compensated by the time saved in back‐projecting and matching of the landmarks
in the subsequent modules of the localization pipeline [Color figure can be viewed at wileyonlinelibrary.com]
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40%, the total runtime of appearance‐based selection is considerably

lower than without landmark selection. The computational load on

the mobile platform side is even further reduced in a shared‐map

scenario as motivated in Section 1, where ranking and sorting of

candidate landmarks is carried out on the backend side.

From the accumulated running times in the NCLT scenario, it can

be deduced that localization with appearance‐based landmark

selection is able to run at 10–15Hz, while localization without

landmark selection may not be able to exceed 8Hz. Only accounting

for the modules running on the mobile platform in case of a shared‐
map scenario, namely feature‐tracking, landmark backprojection,

matching, and pose estimation, the resulting difference in runtime

performance is increased to 15–30Hz with landmark selection, as

opposed to only 10 Hz without landmark selection.

6 | CONCLUSIONS

In this section, we summarize our key findings and draw conclusions

for the use of appearance‐based landmark selection in practice.

At first, we note that substantial differences in the camera setup

in the NCLT data sets, such as the lack of fish‐eye distortion, does not

have a significant effect on the performance of the appearance‐based
landmark selection. Similar as with the city environment and the

parking‐lot data sets, an appearance‐based selection of 20–30% of the

available landmarks allows achieving a localization performance

similar to using all landmarks.

Furthermore, we have analyzed in detail the performance of

several appearance‐based landmark ranking function in combination

with maps with, and without observation sessions. Selecting landmarks

using the proposed fAEC ranking function yields the best performance,

especially for low selection fractions. However, other formulations

for the ranking functions, most notably fAV and fTfIdfB, achieve

favorable performance too. This observation, together with the

independence with respect to the distribution of landmarks in map

sessions, let fAEC be the ranking function of choice in general.

With the lock‐in effect observed on the data set example

depicted in Figure 11, we have analyzed and described a potential

pitfall inherent to the use of appearance‐based landmark selection.

In practice, an application and use‐case specific monitoring of the

observed localization performance in relation to what perfor-

mance is to be expected is pivotal to swiftly detect a lock‐in

situation and initiate a “reset” of the appearance‐based landmark

selection. Easily trackable metrics, such as the number of observed

landmarks, and the distance from the nearest vertex in the map,

may serve as potent indicators to distinguish lock‐in situation from

poor localization due to too large divergence from the mapped

territory. This suggestion is supported by the strong correlations

between the aforementioned metrics and the localization perfor-

mance, as shown in Figures 10 and 11.

The localization accuracy achieved in the NCLT scenario is in general

in accordance with the respective precision, although the magnitude of

the former is slightly higher. This is attributed to the fact that there are

more sources of error involved, such as the error of the ground‐truth
solution itself, and inaccuracies of the intrinsic and extrinsic sensor

calibrations. It is in this regard important to note again that the pose

estimated in each iteration is computed from solving a nonlinear least‐
squares optimization problem only containing constraints between the

image keypoints and the matched 3D landmarks from the map. In

particular, there is no temporal smoothing or sensor fusion, which would

prevent immediate degradation of accuracy in many situations where

temporarily only few landmark are observed.

In a detailed computational performance analysis, we have shown

that our localization pipeline with appearance‐based landmark

selection is able to run in real time. Furthermore, the use of

appearance‐based landmark selection significantly lowers the com-

putational demand on the mobile platform, as only a fraction of

landmarks have to be processed in each localization iteration.
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APPENDIX A

We present the observation percentage and localization precision

separately for each data set of the three data set collections in

Section A.1. This relates to Sections 5.5, and 5.6, where the same

metrics are shown in aggregated form.

Furthermore, we compare the localization performance with

different choices of feature descriptors on the parking‐lot data sets.

The respective results can be found in Section A.2.

We conclude the appendix with a list of all data sets used in this

evaluation, the respective weather conditions, and some sample

images in Section A.3.

A.1 | Individual data set performance analysis

In Figure A1, the observation percentage is shown with ranking function

fAEC for selection fractions of 10–40% with maps containing only rich

sessions. It can be observed that for certain data sets of the parking‐lot

collection, the average number of observed landmarks with a 30% or
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40% selection fraction can even exceed the average number of observed

landmarks when using all candidate landmarks. This exhibits a saturation

effect, resulting in occasionally achieving a higher number of observed

landmarks with only a subset of selected landmarks, as opposed to using

all candidate landmarks. While counterintuitive at first, this is due to the

fact that including more candidate landmarks increases the chance of

forming wrong 2D–3D matches. After the subsequent pose estimation

step, these wrong matches are then classified as outliers, resulting in a

potentially lower number of observed landmarks.

Furthermore, the different observation percentage characteris-

tics during daytime as opposed to at night are clearly visible in the

city environment. During the day, a selection of 40% of the landmarks

F IGURE A1 The average observation
percentage robs for selection fractions

between 10% and 40%, for every data set
of the NCLT (top), parking‐lot (middle), and
city environment data set collection against

maps containing only rich sessions [Color
figure can be viewed at
wileyonlinelibrary.com]
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is not sufficient for an observation percentage of more than 90%,

while at nighttime, even 20% of selected landmarks achieve almost

an observation percentage of 100%.

The localization precision using different ranking functions and

with a selection fraction of 20% are shown for each data set of all

three collections in Figure A2–A4, respectively. The results reflect

the patterns visible in Figure A1, and in Section 5.5. The best

performance is achieved using fAEC , fAV , and fTfIdfB for ranking

landmarks, with precision values often close to that of using all

landmarks for localization instead. While the precision using fMRS can

vary considerably between different data sets, ranking functions

fTfIdfA fails, resulting in occasionally even worse precision than

selecting landmarks randomly.

Enriching the maps with observation sessions results in a higher

variance of performance between different ranking functions, as can be

seen in Figure A5 for the NCLT and parking‐lot collection, and in Section

5.6 in Figure 8 for the city environment. The respective localization

precision results are shown in Figures A6–A8. Most notable is the failure

of the ranking function fNCV during daytime in the city environment. As

discussed in Section 5.6, ranking function fAEC is the only one achieving

consistently high localization precision in the city environment both during

daytime, at dusk, as well as at nighttime.

F IGURE A2 The localization precision for a selection fraction of 20%, for every data set of the NCLT collection against the map containing
only rich sessions [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A3 The localization precision for a selection fraction of 20%, for every data set of the parking‐lot collection against the map
containing only rich sessions [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A4 The localization precision for a selection fraction of 20%, for every data set of the city environment collection against the map
containing only rich sessions [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A5 The average observation percentage robs for a selection fraction of 10%, for every data set of the NCLT and parking‐lot collection
against the map with observation sessions [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A6 The localization precision for a selection fraction of 10%, for every data set of the NCLT collection against the map with
observation sessions [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A7 The localization precision for a selection fraction of 10%, for every data set of the parking‐lot collection against the map with
observation sessions [Color figure can be viewed at wileyonlinelibrary.com]
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A.2 | Feature descriptor comparison

Our proposed appearance‐based landmark ranking functions are

per construction independent of the local feature descriptor used

for mapping and localization, as they only take the co‐observa-
bility patterns of landmarks into account. Nevertheless, the

feature descriptor is an integral part of the localization pipeline,

and thus the resulting performance of the localization with

appearance‐based landmark selection may not be identical with

every choice of local feature descriptor. We have therefore

evaluated the localization performance with popular choices of

different local feature descriptors on the parking‐lot data set

collection. The results are shown in Figures A9–A11. As

expected, the results are similar regardless of the choice of

descriptor.

F IGURE A8 The localization precision for a selection fraction of 10%, for every data set of the city environment collection against the map
with observation sessions [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A9 Observation percentage for different choices of feature descriptors, with a selection fraction of 20% against the map with only
rich sessions, aggregated over all data sets of the parking‐lot collection [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A10 Localization precision with different choices of feature descriptors, a selection fraction of 20% against the map with only rich
sessions, aggregated over all data sets of the parking‐lot collection [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE A11 Localization precision with different choices of feature descriptors, a selection fraction of 10% against the map with
observation sessions, aggregated over all data sets of the parking‐lot collection [Color figure can be viewed at wileyonlinelibrary.com]
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A.3 | Sample images

TABLE A1 List of the parking‐lot data sets with their respective
weather condition and usage in the maps. The lower‐case “r” and “o”

indicate that the data set has been added to the map as rich and
observation sessions, respectively

TABLE A2 List of the city environment data sets with their
respective weather condition and usage in the maps. The lower‐case
“r” and “o” indicate that the data set has been added to the map as
rich and observation sessions, respectively
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TABLE A3 List of the NCLT data sets with their respective
weather condition and usage in the maps. The lower‐case “r” and “o”
indicate that the data set has been added to the map as a rich and
observation sessions, respectively
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