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Autonomous Navigation in Inclement Weather
based on a Localizing Ground Penetrating Radar

Teddy Ort1, Igor Gilitschenski1, Daniela Rus1

Abstract—Most autonomous driving solutions require some
method of localization within their environment. Typically, on-
board sensors are used to localize the vehicle precisely in a
previously recorded map. However, these solutions are sensitive
to ambient lighting conditions such as darkness and inclement
weather. Additionally, the maps can become outdated in a rapidly
changing environment and require continuous updating. While
LiDAR systems don’t require visible light, they are sensitive
to weather such as fog or snow, which can interfere with
localization. In this paper, we utilize a Ground Penetrating Radar
(GPR) to obtain precise vehicle localization. By mapping and
localizing using features beneath the ground, we obtain features
that are both stable over time, and maintain their appearance
during changing ambient weather and lighting conditions. We
incorporate this solution into a full-scale autonomous vehicle
and evaluate the performance on over 17 km of testing data in a
variety of challenging weather conditions. We find that this novel
sensing modality is capable of providing precise localization for
autonomous navigation without using cameras or LiDAR sensors.

Index Terms—Autonomous Vehicle Navigation, Field Robots,
Wheeled Robots, Intelligent Transportation Systems

I. INTRODUCTION

ROBUST localization in diverse conditions is a key
challenge to enable the widespread deployment of au-

tonomous vehicles. Since relying purely on a global navigation
satellite system (GNSS), such as the Global Positioning Sys-
tem (GPS) does not provide sufficient precision, research and
industry efforts have focused primarily on utilizing cameras
and laser scanners for the navigation task. These systems
typically use Simultaneous Localization and Mapping (SLAM)
algorithms [1] for creating and maintaining maps of the
environment that allow for highly precise localization and
navigation.

Using vision and laser sensors as localization sources comes
with its own set of challenges. For instance, localization from
purely visual maps needs to account for the fact that, even in
the absence of occlusions, the appearance of the environment
strongly varies depending on weather, season, time of day, and
a potentially changing environment [2]. While laser scanners
do not suffer from changing illumination conditions, they are
still highly affected by weather, occlusions, and environment
dynamics.
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Fig. 1. Our LGPR based autonomous navigation system is capable of
successfully localizing from a single map in different challenging weather
and lighting conditions including snow, rain, and darkness.

Recently, the use of a Ground Penetrating Radar (GPR) was
proposed for localization [3]. Similar to the aforementioned
approaches, this Localizing Ground Penetrating Radar (LGPR)
can be combined with GPS to constrain the search space.
The main advantages of using GPRs for the localization
task is their robustness to dynamic surface environments,
illumination changes, and visibility conditions. This is made
possible by a ground facing sensor array that creates maps of
the underlying structure of the soil and uses these maps for
subsequent localization. However, the LGPR system has never
been evaluated on an autonomous vehicle in adverse weather
conditions which include some of the key applications for this
technology.

In this work, we deploy the LGPR on a full-scale au-
tonomous Toyota Prius (as shown in Fig. 1). We describe
its incorporation into a novel autonomous driving pipeline
and justify all of our design choices. Through extensive
evaluations, we demonstrate the practical capability of LGPR
to enable an autonomous vehicle to drive without relying on
any visual or surface features. For this reason, the method
works even when the driving surface is covered with rain or
snow. While the LGPR performs vehicle localization, it does
not enable dynamic obstacle detection in inclement weather.
However, in this paper we focus on the localization problem
and leave the detection of dynamic obstacles in challenging
weather conditions for future work.
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Overall, our contributions can be summarized as follows:
• Design of a new autonomous driving pipeline based on

LGPR.
• Demonstrate mapping, localization, planning, and control

of an autonomous vehicle without relying on any visible
surface features.

• Extensive evaluation of our system localizing on the same
map in a variety of weather conditions including clear
weather, rain, and snow.

II. RELATED WORK

Radar-based Perception. Radars serve as a key component
for advanced driver assistance systems and autonomous vehi-
cles [4]. Past research in that space focused on fusing radar
data with various other sensor types particularly Lidars [5] and
cameras [6] for applications such as pedestrian detection [7]
and tracking [8]. Radar-based SLAM approaches [9] usually
model structural features in the surrounding environment and
have also been investigated in the context of vehicle self-
localization [10], [11]. However, these approaches may fail
without special considerations to account for dynamic objects
and changing surroundings.

Appearance and Persistence Modelling. Particularly for
visual SLAM [1], [2], an extensive body of research explicitly
focuses on addressing these types of problems. The breadth
of approaches involves inpainting and removal of dynamic
objects [12], [13], selecting particularly persistent landmarks
for map storage [14], and selecting appearance specific land-
marks [15] or map segments [16]. We avoid the problems
addressed in this line of work altogether by using sub-surface
features that do not suffer from frequent appearance changes
and occlusions.

GPRs in Robotics. Sub-surface sensing tasks are usually
carried out using GPRs. So far, corresponding research work
mainly focused on applications such as measuring the makeup
and content of the soil [17], [18], locating underground struc-
tures [19], mapping archaeological features [20], or landmine
detection [21], [22]. Similarly, GPR deployment on robots
mainly focused on data collection tasks such as autonomous
surveys [23], [24], inspection [25], or lunar crust analysis [26].
Contrary to these approaches, we do not focus on classifying
the content in the GPR images but rather on using them to
improve the navigation capabilities of the autonomous system.

Only a limited number of works focuses on consideration
of occluded structures in radar-based SLAM such as [27].
The first use of a GPR for localization was reported in [3]
focusing on describing the design of a low-profile low power
GPR system and first demonstrations of real-time localization.
In contrast, the present work demonstrates a fully-integrated
LGPR system for autonomous driving. Moreover, we establish
and evaluate the sensor’s suitability for successful localization
across different weather conditions even when using the same
map.

III. SYSTEM OVERVIEW

An autonomous vehicle requires a large system architec-
ture to enable safe navigation. The key components of this

system include: mapping, localization, planning, and control.
Fig. 2 shows a diagram of the various system components. In
the following subsections, we describe the function of these
components with an emphasis on how the design differs in an
LGPR system.

Fig. 2. The autonomous navigation system architecture showing the key
system components: Mapping, Localization, Planning, and Control. The
LGPR system used as the primary localization sensor is outlined in red.

A. Mapping

During the mapping phase, the vehicle is driven by a human
operator and the data from the vehicle’s sensors is recorded.
Once this step is completed, the saved map enables the vehicle
to localize in that area. There are two key differences between
the dense 3D maps required in typical vision or LiDAR
systems, and those created using an LGPR sensor. Firstly,
because vision and LiDAR maps record surface features, they
require maintenance when any of those features change which
can result in burdensome repeated map updates. LGPR maps
on the contrary, record subsurface features which are unlikely
to change frequently. Secondly, dense sensor maps typically
take up large amounts of space which makes them difficult to
store and transmit. For example, [28] compares the size of a
typical (20,000 mile) topological map such as OpenStreetMap
with that of a highly compressed 2D sensor map of the same
area. The topological map only requires 3GB while the sensor
map requires about 200GB of storage space. However, the
topological map does not contain enough information for
precise localization. To store an LGPR map of the same
area we require approximately 160GB. The data structure
used to store the LGPR maps is described in Sec IV-B2.
Intuitively, these are smaller because the sensor measures only
a thin slice directly below the vehicle, while typical 3D maps
contain a detailed view of the entire environment including
surrounding buildings and vegetation. Thus, LGPR maps can
provide precise localization in changing surface conditions
without requiring as much storage space.

B. Localization

During operation, the autonomous vehicle must have precise
localization information in order to ensure that it closely
follows the desired path. Standard freeway lane-widths in the
United States are 3.6m [29] while the width of a typical
passenger vehicle is 1.7m. This gives only about 1m of
clearance on each side which is beyond the accuracy of
GPS systems even when augmented with wheel odometers
[30]. LiDAR or vision based maps provide localization with
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sufficient accuracy. However, they are susceptible to ambient
lighting conditions and fail if road surface features such as lane
markings are obscured by rain or snow. The LGPR sensor pro-
vides precise localization to the vehicle by matching the sensor
data during operation to that stored during the mapping phase.
Finally, this localization update is then probabilistically fused
with the onboard proprioceptive sensors including the wheel
odometry and the Inertial Measurement Unit (IMU). These
are combined to provide a robust and precise localization
estimate at a rate of 40Hz. Note that distance travelled during
a single cycle is given by d = v/f where v is the vehicle
velocity and f is the loop frequency. Therefore, f = 40Hz is
enough to ensure that even at highway speeds of 30m/s the
vehicle would travel <1m before receiving a new localization
estimate.

C. Planning

The planning component determines the path the vehicle is
required to take to safely navigate to its destination. It begins
by determining the current location of the vehicle which it
receives from the localization system see Sec III-B. Next, it
uses the LGPR-map from Sec III-A to determine which roads
must be traversed, and dynamic obstacle detection systems
to plan a collision free path toward the goal. Choosing which
roads to take is performed using a shortest-path algorithm such
as Dijkstra [31] and is similar to that performed on standard
vehicle navigation devices thus we will not expound on it
here. However, autonomously following the desired path is
not trivial. To do so, we utilize a pure pursuit controller see
Sec. V-A for details. This algorithm is capable of planning
paths that follow a reference trajectory even when the vehicle
cannot exactly follow the reference as is typical in real-world
scenarios. This algorithm is a challenging test for the LGPR
localization system, which in previous work [3] was only
evaluated while being manually driven exactly over the same
path as that in the map.

D. Control

The control component is required to determine the actual
control values to transmit to the vehicle, including accelerator,
brake, and steering wheel angle. These values are computed
in order to ensure that the vehicle will follow the planned
trajectory. In our system, we utilize two PID controllers to
obtain the necessary control values. One of these controls the
accelerator and the brake, while the other controls the steering.
The gains were tuned to allow the vehicle to quickly achieve
a desired configuration while avoiding any instabilities due to
lag in the system.

IV. A LOCALIZING GROUND PENETRATING RADAR

In this section, we describe how the LGPR sensor is used
both to build maps during the mapping phase, as well as to
provide localization during autonomous operation (see Fig. 4).
The LGPR sensor uses electromagnetic radiation in the 100-
400MHz range which is much lower than typical (1-3GHz)
GPR devices used for surveying [32]. This allows the sensor to

resolve subsurface geological features in the 20-30 cm range
with the additional benefit of improving the penetration depth.
The shallow penetration depth of higher frequency sensors
would not penetrate below the road as necessary for observing
unique underground features. In general, the penetration depth
is dependent on the relative permeability of the soil [3]. In
our testing region, (Devens, Massachusetts) skin depths of
D ≈ 100cm are typical leading to penetration depths in the
2-3m range. Road materials and soil are transparent to radar
signals at these frequencies. However, changes in the dielectric
properties of the subsurface geology due to variations in soil
type and density, rocks, roots, or layer boundaries cause the
signals to be reflected back to the LGPR sensor. During each
element pulse, the neighboring element is used to measure
the intensity of the reflected signal and record an “image”
of the subterranean content beneath the element at the time
the pulse occurred. In the following subsections we describe
the key features of A) the LGPR sensor utilized, and B) the
localization algorithm used both to record the prior map, as
well as to localize a new scan.

Fig. 3. The LGPR sensor mounted on the rear of the autonomous vehicle. The
main components include the 11 element radar array and the switch matrix
which collected the signals from the array. The processing chassis contains
the onboard computer for the sensor data processing, and the GPS unit used
for labeling the prior maps and initializing the search window for localization.

A. LGPR Sensor

The LGPR sensor used in this work was custom designed
by MIT Lincoln Laboratory for the purpose of localization.
Fig. 3 shows the key sensor hardware components. The sensor
measures 152cm x 61cm x 7.6cm which requires it to be
mounted outside the vehicle. Because the measurement range
resolution depends on the width of the array, the sensor cannot
be easily miniaturized. Therefore, the sensor was mounted on
the rear of the test vehicle at 32 cm above the ground (See
Fig. 1). This distance was chosen because it is close to the
ground - ensuring a greater penetration depth - while still
remaining high enough for adequate road clearance. Note that
in [3] the sensor was able to be lowered to 15.24 cm which
may have an effect on our results. Furthermore, we believe
the placement on the rear of the vehicle is most stable since
the vehicle begins to depart from the recorded path front first.
This ensures the localization estimates will be available as
long as possible to correct for any departures. However, due
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Fig. 4. The autonomous navigation pipeline which processed sensor inputs from the wheel odometry, and LGPR sensor, and computed steering and speed
commands to send to the vehicle to autonomously drive the vehicle along the goal path.

to hardware limitations, the sensor location remained fixed so
we cannot know empirically how strong these effects are.

Here we will describe the key features of the sensor, see [3]
for more detailed specifications. The LGPR array is composed
of 12 radar elements. During a single sensor sweep, each
element transmits for a fixed period while its neighboring
element receives the reflected signal. Thus, although there
are 12 elements only 11 channels of data are returned. The
data is then passed through a number of post-processing
steps including an Infinite Impulse Response filter, online
calibration, as well as factory measured calibration corrections
to ensure the data is free of noise and sensor biases. The
resulting measurement from each channel is an array of 369
bytes representing the relative intensities of the reflections
at each depth. Each channel pulses for 8ms which gives a
maximum sensor rate of 126Hz. Thus, a complete sweep of the
sensor can be considered an image of single-byte pixels with
dimension 11x369 where each pixel color gives the intensity
of the reflected wave at a particular location. Fig. 5 shows
an example of the values of a single element taken as the
vehicle moved along a path. The coherent structures in these
images provide a picture of the content of the subterranean
environment measured by the sensor.

B. Localization Algorithm

The onboard computer in the processing chassis receives
the sensor data from the switch matrix, which collects the
signals from each of the 12 radar elements. The sensor has
three modes of operation: 1) Calibration, 2) Map Creation,
and 3) Localization.

1) Calibration: During sensor calibration, each element is
pulsed for a short period and the mean values are recorded
to ensure the resulting signals are mean centered at 0 and
to compensate for variations in temperature. The calibration
routine is fully automated, only takes a few seconds, and
[3] found that it allowed the sensor to operate robustly at
temperatures ranging from−5 ◦C to 50 ◦C. In our experiments,
we recalibrate daily, which is necessary to compensate for
thermal expansion of the sensor components. However, since
the recalibration always zeros the mean of the signal, we found

it does not preclude localizing to a prior map created with a
prior calibration.

2) Map Creation: During the map creation phase, a human
driver operates the vehicle and each scan from the sensor
is recorded in sequence building a 3D tunnel of dimension
11 × 369 × N for the 11 channels, 369 discrete depth bins,
and N sensor sweeps. Additionally, the GPS coordinates of
the vehicle are collected and associated with each scan. It is
important to notice that a standard GPS device could be used
for this labeling process, and in fact, the LGPR localization
would still outperform even the GPS device that was used in
the making of the map itself. Consider that the key information
the LGPR sensor must provide during localization is the pose
of the vehicle with respect to the original data. There is no real
requirement to use GPS coordinates at all when labeling the
scans. While it is convenient to use GPS coordinates in order
to allow the sensor localization results to have some real-world
meaning, even if the mapping GPS is not accurate to the “true”
GPS coordinates, the vehicle will still be able to follow the
desired path. For this reason, the extrinsic calibration between
the GPS and LGPR is also not needed. Since the GPS is
only being used for labeling, a fixed offset will not affect
system performance. We will call these coordinates LGPR-
GPS coordinates to differentiate them from the true GPS
coordinates that are fixed to the earth frame.

Fig. 5. LGPR data collected from a single radar element as the vehicle was
driven over a path. The colors indicate the intensity of the reflected signal at
each depth and the high degree of structure in the data allows the subterranean
geological features to be coherently measured using this method.

3) Localization: During the localization phase, a single
sweep of the sensor is compared to the prior map database. In
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order to keep memory costs constant, the map data is pulled
from the database in square grids in the local area where the
vehicle is operating. Next, for a given hypothetical pose for
the current scan in the map, the correlation is calculated as

rA,B =

∑
i,d

Ai,dBi,d√∑
i,d

A2
i,dB

2
i,d

(1)

where A, and B represent the current scan, and the scan
data from the prior map respectively, i spans the number of
channels, and d spans the number of depth bins. Note, that
rather than assuming the vehicle sensor will directly overlap
a previous scan, the scan from the prior map is generated
for any 5 degrees of freedom (DOF) pose (x, y, roll, pitch,
yaw) of the vehicle by interpolating in the 3D tunnel from the
dataset. (Even though the vehicle does change altitude, since
it’s height with respect to the map remains constant the z
value is unnecessary. However, the roll and pitch are included
because small variations in the orientation of the sensor due
to vehicle suspension could lead to large errors in the position
of underground features.) In this way, any hypothetical pose
that overlaps the data is considered. To find the optimal match
that maximizes rA,B in (1), a particle swarm optimization is
performed to balance the need for quickly finding solutions
when they exist in the expected location, with the ability to
search over a large area. As described in [3] the number of
particles, the size of the search region, and the number of
iterations, are tuned online to ensure fast operation when the
correlations are high, with a more exhaustive search if the
correlations indicate a poor match. Importantly, although the
sensor itself, polls at a constant 126Hz, the particle swarm
optimization can limit the actual localization frequency. With
the computational resources available (see Sec. VI-A), we
found that the localization results could keep up with the
sensor frequency only when the vehicle was following closely
to the path in the prior map. However, when correlations were
lower due to noise, or the sensor not fully overlapping with
the prior map, the localization frequency would drop.

Each localization solution includes a 5 DOF pose composed
of LGPR-GPS coordinates and orientation, the correlation
value rA,B ∈ [−1, 1] , and an overlap value uA,B ∈ [1..11]
indicating how many of the 11 channels overlapped with
the prior map in the optimal pose. In the next section, we
detail how these localization estimates were integrated into
the autonomy pipeline.

C. Sensor Fusion

We utilize multiple instances of the Extended Kalman Filter
(EKF) algorithm for fusing the various sensors. One instance
fuses the wheel encoders and IMU sensor measurements to
obtain a filtered odometry estimate, and a second instance
fuses these with the LGPR measurements to obtain an es-
timate in the LGPR-GPS reference frame. The motivation
for using two separate EKF instances is twofold. Firstly, the
proprioceptive sensors run at a consistently fast frequency
while the LGPR sensor is sometimes slower if the correlation

quality is low. Secondly, this gives access to a smooth position
estimate in the local frame of the robot, while the global
estimate can have discrete jumps if an LGPR correction
comes in after a relatively long pause. The EKF algorithm
has been exhaustively explored in the literature [33]–[35] so
we will only cover the key parts that are important for our
implementation. We utilize the EKF architecture as described
in [36] for both instances. The state vector is 8 dimensional
containing the 3 DOF pose of the robot, its velocities, and
linear accelerations:

x =
[
x, y, θ, ẋ, ẏ, θ̇, ẍ, ÿ

]>
We utilize the wheel encoders only to measure the linear
velocity ẋ and the IMU to measure θ and θ̇. Note the IMU is
paired with a magnetometer giving it an absolute measurement
of θ rather than solely a relative one. We extrinsically calibrate
the IMU using the procedure described in [37]. Each LGPR
measurement contains

z =
[
latitude, longitude, θ

]>
which is transformed into the Universal Transverse Mercator
(UTM) frame using the transform in [38]. The process noise
covariance matrix w ∈ R8×8 was tuned in the field to match
observed uncertainties. It contains only diagonal entries with
the values:

diag (w) =
[
0.5, 0.5, 6, 2.5, 2.5, 2, 1, 1

]
× 10−2

Finally, since each of the sensors directly measures a state
variable, the associated observation matrix H (the jacobian
of the observation function) is all 0’s except for 1’s in the
diagonal positions of the measured state variables.

V. PLANNING AND CONTROL PIPELINE

A. Pure Pursuit Controller

The pure pursuit controller [39] is a path tracking controller
for Ackermann steered autonomous vehicles. It was used
by the MIT entry in the DARPA Urban Challenge in 2007
[40] and has been widely adopted for autonomous driving
applications. One key feature of the algorithm is it’s pursuit of
a “lookahead point” on the goal path at some distance d ahead
of the vehicle to smoothly adapt to deviations of the vehicle
from the reference path. The pure pursuit steering equation is

δ = tan−1
(
L
2x

d2

)
Where δ is the required steering angle, x is the offset to
the goal point, L is the vehicle length (measured between
the front and rear axles) and d is the lookahead distance.
Fig. 6 shows the vehicle driving along the goal path (in green)
and approaching a left turn. The blue path shows how the
pure-pursuit algorithm will steer the vehicle. As expected, it
begins by oversteering in the beginning of the turn and then
overshoots at the end. The amount of path deviation depends
on the lookahead parameter d. However, when utilizing LGPR,
deviations from the path cause the sensor overlap value uA,B

to drop as discussed previously. The EKF implementation
described in the previous section is crucial to allow the vehicle
to continue navigation even when the overlap is low.
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Fig. 6. The pure pursuit tracking algorithm was used to smoothly steer
the vehicle along the goal path (shown in green). The blue sphere shows the
lookahead distance and the blue curve shows the path the controller intends
to take. As expected, this path tends to deviate from the goal path in turns.

B. Speed Controller

For the purpose of evaluating the LGPR’s capability to
provide localization for autonomous navigation, the speed of
the vehicle is not a critical element. However, a controller to
regulate the speed was still required to maintain the vehicle
cruising speed and appropriately decelerate in turns. To this
end, we designed a speed control law:

v = min

{
vmax,

α vmax

|δ|

}
Where vmax is the maximum speed, α is a tunable parameter,
δ is the steering angle, and v is the commanded speed sent
to the vehicle controls. [3] evaluate the performance of the
localization with a human operator at speeds of up to 65mph.
For our tests however, using a fully autonomous vehicle, we
set vmax = 10− 20mph for safety reasons. Finally, we found
that α = 0.1 provided an appropriate rate of speed reduction
while turning.

VI. EVALUATION

We performed extensive evaluation of the system in order to
verify that the LGPR sensor could provide a localization esti-
mate precise enough for autonomous navigation. We measure
the localization accuracy while the system is being operated
autonomously and compare it to the localization accuracy
when a human is driving. Finally, because the key benefit of
LGPR localization over existing localization techniques is its
capability in inclement weather, we compare the localization
accuracy in different weather conditions.

A. Setup

The testing site was a closed rural area in Devens, Mas-
sachusetts. It includes ∼7 km of unmarked roads and 9 in-
tersections. Testing took place over a period of six months to
compare a variety of weather and lighting conditions including
clear weather, snow, rain, and darkness (See Fig. 1).

The LGPR sensor was mounted on the trailer hitch of a Toy-
ota Prius which was modified to drive by wire. Two computers
ran in parallel to enable the autonomous system. Onboard the
LGPR sensor the LGPR-PC carried out all localization related
computation. The sensor broadcast localization estimates via
Ethernet to the PRIUS-PC onboard the vehicle. The PRIUS-
PC then incorporated that information into the autonomous

driving system. Note that the PRIUS-PC was a consumer
grade laptop computer with an Intel Xeon E3-1505Mv5 Quad
Core 2.80GHz processor, 32GB of RAM, and running Ubuntu
16.04. The only other sensors used during testing were two
wheel encoders on each of the rear wheels and an IMU.

To evaluate the performance of the system, an additional
RTK-GPS unit with Differential GPS (DGPS) corrections from
a fixed base station was installed on the vehicle for ground
truth. The setup gives the precise vehicle position with ∼2 cm
accuracy. While the LGPR system already uses an onboard
GPS for creating maps, and initializing the search radius,
that device did not have access to the base station correction
in order to simulate real-world operation. The base station
only has a broadcast radius of up to 9 km, which renders it
impractical for use in general purpose autonomous vehicles.
The measurements from the base station were used only for
analysis and evaluation of the LGPR system.

We chose to use the uncorrected GPS unit for the LGPR de-
vice even during the mapping phase as requiring an extremely
accurate GPS sensor could make it very difficult to create
maps. Furthermore, since the GPS coordinates saved are only
necessary to be locally accurate for navigation purposes, it is
not necessary that the LGPR-GPS coordinates match the true
GPS coordinates.

B. Testing

During testing, each test was composed of two runs each of
which yielded two trajectory measurements for a total of four
trajectories per test. The first run was a mapping run with the
LGPR system in map creation mode and the vehicle driven by
a human driver. The trajectory measured by the LGPR sensor
during map creation will be denoted Tmap

LGPR. Additionally,
the RTK-GNSS system was used to precisely track the true
trajectory of the vehicle during map creation and that trajectory
will be denoted Tmap

GNSS . Next, the vehicle was driven over
the same track again, with the LGPR sensor set in tracking
mode. The localization estimates during the testing run will be
denoted T test

LGPR. Again, the RTK-GNSS was used to measure
the true trajectory of the vehicle and that trajectory will be
denoted T test

GNSS . Note that during the testing run the vehicle
could be piloted by either a human driver, or the autonomous
system.

The LGPR sensor only needs to localize the vehicle within
the coordinates of the created map, rather than in the fixed
ground-truth GPS frame. Therefore, we cannot simply com-
pare the T test

LGPR estimate to the T test
GNSS because the coordi-

nates of the LGPR system are limited by the accuracy of the
onboard GPS unit used for mapping (which does not receive
base station corrections). Hence, there is no expectation for the
T test
LGPR values to match the “correct” ones, rather they need

to be consistent with those measured in the mapping phase
in order to allow accurate path following. Consequently, as in
[3], we utilize a relative metric to obtain the accuracy of the
LGPR localization by computing the mean relative difference.
That is, the mean error over a run with n scans is computed
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Fig. 7. A comparison of the LGPR estimates compared to ground truth in
various weather conditions.

as:
1

n

∑
n

∥∥∥(T test
GNSS,i − T

map
GNSS,i

)
−
(
T test
LGPR,i − T

map
LGPR,i

)∥∥∥
where, the ith estimate of the Tmap

GNSS is denoted Tmap
GNSS,i etc.

Note that the subtractions shown are the vector differences
between the offset from the map to the test runs as measured
by the LGPR sensor, and the same vector as measured by
the RTK-GNSS system. This method provides a measurement
of how closely the relative position estimate of the LGPR
system matches the ground truth RTK-GNSS system which is
necessary for autonomous path following.

One concern with calculating the mean error is aligning the
timing of the trajectories. Each trajectory is measured using
individual sensor clocks yielding four separate time series. The
two trajectories for each run occurred at the same real world
time, and therefore alignment only requires finding the scalar
offset between the clocks. However, the time steps between
the map and test runs cannot be as easily aligned because
the runs took place over different intervals. To align these
four trajectories to a unified time axis, we first align the
estimates in Tmap

GNSS and T test
GNSS by aligning each point in

the test trajectory with the closest point in the map. Next,
the two scalar offsets that best align the LGPR and RTK-
GNSS trajectories respectively were found through numerical
optimization.

Fig. 8. A histogram showing the distribution of scan correlations between
the test run and the LGPR map in various weather conditions.

Finally, after synchronizing the timing and calculating the
total mean error, the error vector e at each scan point was
decomposed into a cross-track error, e⊥, and an along-track
error, e‖ for additional insight. First, the unit tangent vector

Fig. 9. A comparison of the LGPR estimates compared to ground truth in
manual and autonomous driving modes.

at each point was calculated using a centered finite difference
along T test

GNSS and then the components along the track and
perpendicular to the track were found such that e = e⊥ + e‖.
For autonomous navigation purposes, the requirements for low
cross-track error are typically more stringent than the along-
track error due to lane tolerances.

C. Results

The system was evaluated over a total of 17 km composed of
both manual and autonomous driving modes in clear weather,
rain, and snow.

1) Weather Conditions: Fig. 7 shows the results from com-
paring the effect of weather on localization accuracy. In clear
weather, the system achieved 0.34m mean total error with
a cross-track error of only 0.26m. This value is significantly
better than GPS error which is typically >1m even when fused
with inertial and wheel odometry sensors [30]. Comparing
the results from clear weather and snow, there is very little
degradation in localization accuracy with mean total error of
0.39m and mean cross-track error of 0.29m respectively.

In the tests during rain, a degradation in the localization
quality was observed, The mean total error jumped to 0.77m
and mean cross-track error was 0.40m. However, these values
are still significantly lower than utilizing a GPS/INS solution
and were not large enough to require disengagement of the
autonomous system. This degradation in localization accuracy
can potentially be attributed to the water in the ground
changing the dielectric properties of the soil and inhibiting
the penetration depth of the signal. Fig. 8 shows a histogram
of the correlation values of the localization measurements
as calculated in Eq. (1) in various weather conditions. It is
interesting that rather than the rain causing a high instance of
very low correlations, it only shifts the histogram left which
indicates that the rain is not fully obscuring the signal but
rather “blurring” it and making the measured scans more
difficult to match to the map. It is possible that these signals
could be cleaned in post-processing to achieve accuracy in
rain closer to that in clear weather. However, we leave that
for future work.

2) Driving Mode: Finally, Fig. 9 shows the evaluation
results when comparing autonomous and manual driving.
During manual driving, the system achieved 0.27m mean
total error and 0.20m mean cross-track error. However, in
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autonomous mode, the mean total error went up to 0.5m
and the mean cross-track error was 0.36m. (Note that this
includes all weather conditions.) The degraded performance
in autonomous mode can be attributed to the fact that the
autonomous systems do not follow the mapped path perfectly.
However, the magnitude of the error was not so significant
to preclude following the reference path and over the course
of over 8 km of autonomous testing not a single unplanned
disengagement was necessary.

VII. CONCLUSION

This paper presents a solution for autonomous driving
using only underground features measured with an LGPR
sensor. This solution permits safely driving in inclement
weather including rain, and snow, and under complete darkness
at night. Furthermore, we have obtained measurements of
the system performance during fully autonomous navigation,
which, to the best of our knowledge, has never been published
previously. While safety requirements at our testing facility
did not allow for testing autonomously at high speeds, [3]
tested a similar setup (albeit with a human driver) at highways
speeds and demonstrated successful localization. Therefore,
we believe our results will readily extend to high speed driving
as well. Current limitations of the system involve a decrease in
performance when the weather conditions during localization
differ from those during map creation. Furthermore, the current
system is not capable of performing global localization without
using a GPS prior. Thus, future work will investigate methods
explicitly modeling temperature and humidity induced reflec-
tion changes as well as aggregation-based global localization
techniques for precise initialization even in the absence of GPS
priors.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Toward the Robust-Perception Age,” ToR,
2016.

[2] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual Place Recognition: A Survey,” ToR, 2016.

[3] M. Cornick, J. Koechling, B. Stanley, and B. Zhang, “Localizing Ground
Penetrating RADAR: A Step Toward Robust Autonomous Ground
Vehicle Localization,” JFR, 2016.

[4] J. Dickmann, J. Klappstein, M. Hahn, N. Appenrodt, H.-L. Bloecher,
K. Werber, and A. Sailer, “Automotive radar the key technology for
autonomous driving: From detection and ranging to environmental
understanding,” in RadarConf, 2016.

[5] R. H. Rasshofer and K. Gresser, “Automotive Radar and Lidar Systems
for Next Generation Driver Assistance Functions,” Advances in Radio
Science, 2005.

[6] K. Mori, T. Takahashi, I. Ide, H. Murase, T. Miyahara, and Y. Tamatsu,
“Recognition of foggy conditions by in-vehicle camera and millimeter
wave radar,” in IV, 2007.

[7] D. Linzmeier, M. Skutek, M. Mekhaiel, and K. Dietmayer, “A pedestrian
detection system based on thermopile and radar sensor data fusion,” in
FUSION, 2005.

[8] M. E. Bouzouraa and U. Hofmann, “Fusion of occupancy grid mapping
and model based object tracking for driver assistance systems using laser
and radar sensors,” in IV, 2010.
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