
Is Bang-Bang Control All You Need?
Solving Continuous Control with Bernoulli Policies

Tim Seyde1
MIT CSAIL

Igor Gilitschenski
University of Toronto

Wilko Schwarting
MIT CSAIL

Bartolomeo Stellato
Princeton University

Martin Riedmiller
DeepMind

Markus Wulfmeier2
DeepMind

Daniela Rus2
MIT CSAIL

Abstract

Reinforcement learning (RL) for continuous control typically employs distributions
whose support covers the entire action space. In this work, we investigate the
colloquially known phenomenon that trained agents often prefer actions at the
boundaries of that space. We draw theoretical connections to the emergence of bang-
bang behavior in optimal control, and provide extensive empirical evaluation across
a variety of recent RL algorithms. We replace the normal Gaussian by a Bernoulli
distribution that solely considers the extremes along each action dimension - a
bang-bang controller. Surprisingly, this achieves state-of-the-art performance on
several continuous control benchmarks - in contrast to robotic hardware, where
energy and maintenance cost affect controller choices. Since exploration, learning,
and the final solution are entangled in RL, we provide additional imitation learning
experiments to reduce the impact of exploration on our analysis. Finally, we
show that our observations generalize to environments that aim to model real-
world challenges and evaluate factors to mitigate the emergence of bang-bang
solutions. Our findings emphasise challenges for benchmarking continuous control
algorithms, particularly in light of potential real-world applications.3

1 Introduction

Real-world robotics tasks commonly manifest as control problems over continuous action spaces.
When learning to act in such settings, control policies are typically represented as continuous
probability distributions that cover all feasible control inputs - often Gaussians. The underlying
assumption is that this enables more refined decisions compared to crude policy choices such as
discretized controllers, which limit the search space but induce abrupt changes. While switching
controls can be undesirable in practice as they may challenge stability and accelerate system wear-
down, they are theoretically feasible and even arise as optimal strategies in some settings. It is
therefore important to investigate our underlying assumption in designing policies for learning agents,
and analyze how deviations from expected behavior can be explained.

Practitioners have empirically observed that even under Gaussian policies extremal switching, or
bang-bang control [31], may naturally emerge (e.g. in [21, 41, 51]). Thus, recent work focused on
developing methods for preventing this behavior [7] or improving training when bang-bang control is
the optimal policy structure [28]. However, understanding the performance, extent, and reasons for
emergence of Bang-Bang policies in RL is largely an open research question. Its answer is important
for designing future benchmarks and informing empirical and theoretical RL research directions.

1Correspondence to tseyde@mit.edu. 2Equal advising.
3Please find videos and additional details at https://sites.google.com/view/bang-bang-rl

35th Conference on Neural Information Processing Systems (NeurIPS 2021)

ar
X

iv
:2

11
1.

02
55

2v
1

 [
cs

.L
G

]
 3

 N
ov

 2
02

1

https://sites.google.com/view/bang-bang-rl

In this paper we address these questions in two ways. First, we provide a theoretical intuition for
bang-bang behavior in reinforcement learning. This is based on drawing connections to minimum-
time problems where bang-bang control is often provably optimal. Second, we perform a set of
experiments which optimize controllers via on-policy and off-policy learning as well as model-free
and model-based state-of-the-art RL methods. Therein we compare the original algorithms with
a slight modification where the Gaussian policy head is replaced with the Bernoulli distribution
resulting in a bang-bang controller.

In addition to theoretical justifications, our empirical results confirm emergence of bang-bang policies
in standard continuous control benchmarks. Across the board, our experiments also demonstrate high
performance of explicitly enforced bang-bang policies: the modified policy head can even outperform
the original method. In connection to optimal control theory, we demonstrate how action costs
empirically lead to sub-optimal performance with bang-bang controllers. However, we also show the
negative impact of action penalties on exploration with Gaussian policies. Due to the necessity of
exploration in RL to find the optimal solution, this can result in a complex trade-off.

We also provide a discrete action space version of Maxmimum A Posteriori Policy Optimization
(MPO) [1] that avoids relaxations or high variance gradient estimators, which many algorithms rely
on when replacing Gaussians with discrete distributions. This is particularly useful as exploration,
learning process and final performance are highly entangled in RL, and inaccurate or biased gradients
can strongly affect learning. We furthermore aim to mitigate this entanglement by including results
for distilling behaviour of a trained Gaussian agent into both a continuous and a discrete agent to
compare their performance and provide further evidence for emergent bang-bang behavior.

In summary, our work contains the following key contributions:

1. We show competitive performance of bang-bang control on standard continuous control
benchmarks by adapting several recent RL algorithms to leverage Bernoulli policies.

2. We draw theoretical connections to optimal control, motivating the emergence of bang-bang
behavior in certain problem formulations even under continuous policy parameterizations.

3. We discuss the introduction of action penalties as a common method to reduce the emergence
of bang-bang behaviour, and highlight resulting trade-offs with respect to exploration.

2 Related Work

Policy Representation Policies for continuous control are typically chosen to have continuous
support and are commonly represented as Gaussians with diagonal covariance matrices [43, 16, 1, 18],
Gaussian mixtures [56], Beta distributions [11], or latent variable models [15]. Exploration is then
achieved by sampling from the continuous distributions with recent work relating maximum entropy
objectives to the need for maintaining sufficient exploration in bounded action spaces [54]. Some
approaches consider discretizing the action space to facilitate exploration [14], but need to address
the underlying curse of dimensionality [3, 12, 34, 50, 58]. The work by Tang and Agrawal [48] is the
most closely related to our work showing that action space discretization can yield state-of-the-art
performance for on-policy learning based on a sufficiently large number of discrete components.
Here, we provide insight into how even the most extreme discretization of only bang-bang actions
can yield state-of-the-art performance for a variety of on-policy and off-policy algorithms.

Bang-Bang Policies Bang-bang control problems have been considered very early on in reinforce-
ment learning [53, 30, 2]. These early works mainly consider problems known to require such a
policy type. While it was often observed that bang-bang policies naturally emerge [21, 41, 51]
most literature focused on avoiding this behavior [7, 19, 25], while some leveraged it for specific
applications [23, 26]. In contrast, our work focuses on understanding its nature, particularly in
scenarios that were assumed to require continuous actions for obtaining an optimal controller.

Relation to Control Bang-bang controllers have been extensively investigated in optimal control
research. Early works date to the 50s and 60s [45, 4] when it was shown that bang-bang policies arise
as optimal controllers in minimum time problems [32, 31]. More recent work in bang-bang control
focused on, e.g., further analysis [8, 55], numerical computation [9, 38, 39], and consideration of
more specialized systems [10, 29, 35, 57]. Another related line of work are switched dynamical

2

systems where each mode corresponds to a bang-bang configuration. In these settings, one typically
optimizes for switching times given a mode sequence [47] or penalizes the switching frequency as the
control effort [46]. Unlike our work, research in this space typically does not consider the dynamics
of the learning process in a deep RL setting. However, we can still leverage this existing body of
work to inform our explanation for the seemingly surprising emergence of bang-bang policies in RL.

3 Optimal Control with Continuous-Time Deterministic Dynamics

We start by describing connections between the emergence of bang-bang behavior in optimal control
and common continuous control reinforcement learning problems. First, we characterize three
common reward structures together with the optimal controllers they induce. Then, we frame the
solutions and their underlying assumptions in the context of our reinforcement learning setting.

We consider a continuous-time deterministic dynamical system with state s ∈ Rn and action a ∈ R.
The continuous time-setting simplifies analysis and provides a good approximation under the high
sampling rates that are common on continuous control benchmarks and real-world robotic system.
We define the non-linear control-affine system dynamics together with the objective function as

ṡ(t) = f(s(t)) + g(s(t))a(t), 0 ≤ t ≤ T, maximize
∫ T

0

r(s(t))− c(a(t))dt,

where f : S → S , g : S → S , t is the time, T is the final time, r : S → R is the state reward and c :
A → R the action cost. We assume action a(t) to be a scalar in the set A = {a(t) ∈ R | |a(t)| ≤ 1}.
The following derivations can be directly extended to multidimensional inputs [27, Sec. 5.2].

In optimal control settings, this is commonly solved by formulating the corresponding Hamiltonian

H(s(t), a(t), p(t)) = r(s(t))− c(a(t)) + p(t)T (f(s(t)) + g(s(t))a(t)),

where p(t) is the costate variable, and leveraging Pontryagin’s maximum principle [6, Prop. 3.3.1][27,
Sec. 5.4] to derive the necessary optimality condition for action a?(t) ∈ A and 0 ≤ t ≤ T as

H(s?(t), a?(t), p?(t)) ≥ H(s?(t), a(t), p?(t)), ∀a(t) ∈ A.

Maximum state reward (MS) Consider the case when c(a(t)) = 0. Based on Pontryagin’s
maximum principle, the optimal control is determined by solving the following simple linear program

maximize p?(t)T g(s?(t))a(t)
subject to −1 ≤ a(t) ≤ 1.

Based on the optimization surface in Figure 1 (left) we see that the optimal action is given by

a?(t) =

−1 p?(t)T g(s?(t)) < 0

undetermined p?(t)T g(s?(t)) = 0

1 p?(t)T g(s?(t)) > 0.

If the undetermined condition does not occur, this is referred to as bang-bang control.

Minimum fuel-type cost (MF) Consider the case when c(a(t)) = |a(t)|. Through a slight refor-
mulation under introduction of optimization variable z we arrive at another simple linear program

maximize z + p?(t)T g(s?(t))a(t)
subject to z ≤ a(t) ≤ −z

−1 ≤ a(t) ≤ 1.

Based on the optimization surface in Figure 1 (right) we see that the optimal action is given by

a?(t) =

−1 p?(t)T g(s?(t)) < −1
0 |p?(t)T g(s?(t))| < 1

1 p?(t)T g(s?(t)) > 1

undetermined |p?(t)g(s?(t))| = 1.

If the undetermined condition does not occur, this yields bang-off-bang control (see Appendix A).

3

−1 1

p?T g(s?) > 0p?T g(s?) < 0

a(t)

−1 1

p?T g(s?) > 1p?T g(s?) < −1

a(t)

z

Figure 1: Left: bang-bang solutions with arrows representing the cost function coefficient
p?(t)T g(s?(t)). The feasible region is the line segment [−1, 1]. Right: Bang-off-bang solutions with
arrows representing the cost function gradients (1, p?(t)T g(s?(t))) and feasible region in light blue.

Minimum energy-type cost (ME) Consider the case when c(a(t)) = a(t)2. In general, this
formulation leads to non bang-bang optimal control [6, Example 3.3.2].

Singular arcs and chattering behavior In the undetermined conditions the Hamiltonian is no
longer dependent on a(t) and the necessary condition does not allow for determining a?(t). These
cases are commonly referred to as singular arcs. A sufficient condition to avoid singular arcs is
having a linear time-invariant dynamical system that is controllable [27, Sec. 5.6]. If an optimal
control problem has singular arcs, a bang-bang solution may have to switch infinitely often in a finite
time interval to achieve the desired state s?(t). This behavior is referred to as chattering [37] or
Zeno’s phenomenon [59]. It does not appear in our formulation as we are considering discrete-time
dynamical systems with a finite number of discretization points.

Discretization effect The Pontryagin maximum principle cannot be directly extended to discrete-
time dynamical systems without introducing additional assumptions. For example, Bertsekas [6, Prop.
3.3.2] derives a discrete time version which, in order to provide necessary optimality conditions,
requires convexity of the set A. If we consider only bang-bang actions, A is not convex and the
discrete-time derivations no longer hold [6, Example 3.10]. Nevertheless, we find that our discretiza-
tion intervals are sufficiently small to approximate the continuous case (see also Appendix C).

Stochastic dynamics This simplified setup can be seen as a special case of reinforcement learning
problems because of its deterministic dynamics. However, similar derivations can be done in case
of stochastic action policies and dynamics. For example, this is the case when ṡ(t) = f(s(t)) +
g(s(t))a(t) + w(t), where w(t) ∈ Rn is a random disturbance. Stochastic dynamics, together with
the time discretization, are the key components to bridge this setup and the standard RL frameworks,
which are discussed in the next section.

Optimal controller Solving optimal control problems using the Pontryagin maximum principle
is, in general, very challenging since it requires the numerical solution of a set of partial differential
equations [6, 27]. Instead, we directly learn switching controllers as stochastic Bernoulli policies.

4 Reinforcement Learning Preliminaries

We formulate the control and reinforcement learning problems in the context of a Markov Decision
Process (MDP) defined by the tuple {S,A, T ,R, γ}, where S andA denote the state and action space,
respectively, T : S ×A → S represents the density of the transition distribution,R : S ×A → R the
reward mapping, and γ ∈ [0, 1) is the discount factor. Note that this reward can be obtained from the
previous section on continuous time dynamics by defining R(st, at) =

∫ t+1

τ=t
r(s(τ))− c(a(τ))dτ .

We define st and at to be the state and action at time t, with input constraints of the form |at| ≤ amax.
Let πθ(a|s) denote an action distribution parameterized by θ representing the policy and define the
discounted infinite horizon return Gt =

∑∞
t′=t γ

t′−tR(st′ , at′), where st+1 ∼ T (st+1|st, at) and
at ∼ πθ(at|st). The objective is to learn the optimal policy maximizing the expected infinite horizon
return E[Gt] under unknown dynamics and reward mappings. This can be achieved by modeling
πθ(at|st) as a distribution with a neural network predicting the corresponding parameters θ from st.

4

Domain Cartpole Cartpole Cheetah Dog Finger Humanoid Quadruped Walker
Task Swingup Sparse Run Walk Spin Walk Run Walk
Type MS&ME MS MS MS MS MS&ME MS MS

Table 1: DeepMind Control Suite tasks with their objective types based on Section 3.

Algorithm Model Learning Inputs Gradient Estimation
PPO [43] model-free on-policy states REINFORCE
SAC [16] model-free off-policy states Reparametrization
MPO [1] model-free off-policy states Expectation Maximisation

DreamerV2 [18] model-based off-policy images REINFORCE & Reparametrization

Table 2: Algorithms analyzed in conjunction with Bernoulli policies.

5 Experiments

In this section, we work to improve our understanding of empirical performance and characteristics
of controllers learned via RL in continuous control domains. We compare performance and learnt
distributions for Bernoulli and Gaussian policies on several tasks from the DeepMind Control
Suite [49] based on a variety of popular RL algorithms. We then analyse the entanglement of
exploration and converged solution in RL settings and evaluate robustness of the learned policies.
We select MPO for this analysis as it does not require modifications to handle discrete distributions.
First, we focus on the final solution by distilling Bernoulli policies from a Gaussian teacher. Next, we
discuss advantages and disadvantages of bang-bang behavior for exploration. Finally, we evaluate the
effects of augmenting the objective by action penalties on exploration and final solutions of Gaussian
and Bernoulli policies to demonstrate the trade-offs when mitigating bang-bang behavior.

5.1 Algorithms

We consider Proximal Policy Optimization (PPO) [43], Soft Actor Critic (SAC) [16], Maximum A
Posteriori Policy Optimization (MPO) [1] and DreamerV2 [18] as our baseline algorithms. These
approaches differ widely in their learning method, optimization strategy, and input signals. A brief
comparison of their characteristics is provided in Table 2 with additional description in Appendix B.
We investigate the effects of replacing the commonly used Gaussian with a Bernoulli distribution
and provide both qualitative and quantitative comparisons of the learned controllers. For approaches
requiring reparameterization of Bernoulli policies we leverage the biased straight-through gradient
estimator [5] (Appendix B). We place particular focus on MPO as a robust off-policy method which
does not require gradient reparameterization and avoids introducing additional estimation errors.

5.2 Solving Continuous Control Problems with Bang-Bang Policies

We investigate performance of Bang-Bang policies on several continuous control problems from the
DeepMind Control Suite. Figure 2 provides learning curves for PPO, SAC, MPO, and DreamerV2.
We note that restricting agents to only select minimum or maximum actions generally does not
prevent learning on the tasks and even yields competitive performance. This applies across several
domains and distinct algorithm designs (see Table 2).

The presence of action penalties reduces performance of the Bernoulli policies even when the resulting
state-space trajectories appear optimal. For instance, bang-bang control is able to swing-up and
stabilize on Cartpole Swingup but incurs steady-state cost during stabilization as it is unable to
select low-magnitude actions. We also observe lower performance of Bernoulli policies for SAC on
Cartpole tasks. SAC presents some unique challenges, as the target entropy parameter operates on
different scales in the continuous and discrete distribution cases. We found that particularly domains
with low-dimensional action spaces, such as Cartpole, can suffer from premature policy convergence.
Finally, bang-bang control with DreamerV2 does not perform well on Finger Spin. The continuous
policy already displays some difficulties in learning the task in comparison to PPO, SAC, and MPO.
This could indicate that learning a latent model from images can be challenging on this task. Building
the model under only extreme input signals potentially exacerbates these effects. Quantitatively, we
observe strong performance when restricting the agent to employ Bernoulli policies.

5

Figure 2: Comparison of Bang-Bang and Gaussian policy heads for solving continuous control tasks.
We evaluate PPO, SAC, MPO, and DreamerV2 on several domains from the DeepMind Control suite.
Generally, we find that the Bang-Bang policies perform on par with the normal Gaussian policies.

Figure 3: Distribution of actions along a trajectory for MPO. We consider 11 bins per action dimension
and aggregate over 1000 steps. The Gaussian policy exhibits bang-bang behavior in several domains.
Action penalties, particularly on Cartpole Swingup (top left), can reduce bang-bang action selection.

The results in Figure 2 suggest that across most domains, we do not require a continuous action
space. To investigate this phenomenon, we analyze the action distributions of converged policies.
Figure 3 provides binned actions aggregated over an evaluation episode for converged Bernoulli
and Gaussian policies in several domains. We note that the Gaussian policies consistently resort to
extremal actions, particularly on the Finger, Walker and Quadruped tasks. The Cartpole behavior
splits into two phases, leveraging bang-bang control for fast swing-up and near-zero actions during
stabilization. Qualitatively, we find that the Gaussian policies tend to converge to bang-bang behavior.

5.2.1 Disentangling Exploration and Final Solution

The trained Bernoulli and Gaussian policies display strong similarities in their quantitative and
qualitative performance. Since the final performance is affected by both exploration and the ability to
represent the optimal controller, the Bernoulli policies could compensate for lack of expressivity by
enabling better exploration. To focus on the final solution and further investigate similarities between
converged policies, we leverage behavioral cloning to investigate the extent to which a Bernoulli
policy is able to learn from a Gaussian teacher. The student acts in the environment while being
supervised by a converged Gaussian. We maximize log-probability over actions and additionally
discretize Gaussian targets for the Bernoulli student. Figure 4 provides learning curves for both
Bernoulli and Gaussian students. Strong similarity between curves indicates strong bang-bang
characteristics of the Gaussian teacher. The Bernoulli policy performs surprisingly well on all but the

6

Figure 4: Behavioral cloning with a Gaussian teacher. The Bang-Bang and Gaussian students perform
similarly well across several domains, further indicating that the teacher leverages bang-bang control.

Humanoid task. This indicates that the Gaussian teachers consistently leverages bang-bang action
selection and its differences from bang-bang behaviour have only limited impact on performance.

5.3 Robustness Under Perturbations

We observe similar converged performance of the Bernoulli and Gaussian policies. An argument
against bang-bang control for articulated robotic systems from a controls perspective can be stability,
particularly in the absence of ideal sensing or actuation delays that may trigger overshooting. We
therefore investigate the impact of sensor degradation and modification of the environment parameters
based on the Real-World RL Challenge Framework [13].

Environment Modifications To assess whether our observations generalize to more challenging
task variations we consider modifications of the environment parameters. Specifically, we investigate
performance under changes to the system mass, agent morphology, and friction or damping char-
acteristics across the Cartpole, Walker, and Quadruped domains. Figure 5 (left) provides learning
curves for MPO with Bernoulli and Gaussian policies, where parameter values are provided at the
top of each subplot in order. We note that both policy types perform comparably across all tasks and
parameter values, indicating that the Bang-Bang policy is robust to variations of the environments.

Transfer under Disturbances We evaluate policy transfer under real-world inspired sensor degra-
dation. We consider reduction of the control frequency, stuck sensor signals, dropped sensor signals,
sensor delay, and sensor noise (details in Appendix E). The Gaussian action space is a superset of the
Bernoulli action space, yielding a richer set of interactions that could translate to better generalization
around the optimal trajectory. Figure 5 (right) provides normalized scores relative to performance
under ideal sensing based on 40 trajectories. We find that the Bernoulli and Gaussian policies display
similar performance. This indicates that robustness to disturbances is not negatively affected by
limiting controls to bang-bang within the environments considered. A potential reason for this is that
the robot dynamics act as a low-pass filter on the bang-bang input to effectively smooth input jumps.

5.4 Characteristics of Bang-Bang Control in RL settings

Learning bang-bang constrained policies can yield competitive performance that generalizes across
several environment formulations and algorithm designs. Next, we discuss some characteristics of
bang-bang control in RL settings and evaluate methods to avoid such behavior in Gaussian policies.

5.4.1 Intrinsic Exploration of Sparse Rewards

Pointmass Bang-bang policies only apply extremal actions. By forcing highest magnitude actions,
the intrinsic exploration characteristics of an agent are affected. Figure 6 provides two tasks for a
point-mass controlled in x-y position. Each task is evaluated with no or quadratic action penalties
(left, right). Here, we consider Bang-Bang, Bang-Off-Bang, and Gaussian policies. In the top row,
the agent is always initialized at the center and does not receive any rewards. The Bang-Bang policy
exhibits the largest area coverage by virtue of only sampling large magnitude actions. This effect is
magnified under action cost, as other agents limit exploration to reduce cost (see also Appendix F). In
the bottom row, the agent starts at the center without resets and receives sparse rewards at the circles.
The Bang-Bang policy again exhibits the largest coverage. While its large magnitude sampling
facilitates escapes from local optima, it can also impact stabilization at global optima (Figure 6, right).
Overall, Bang-Bang policies offers strong intrinsic exploration that is robust to action penalties.

7

Figure 5: Robustness of the Bang-Bang policies when considering task modifications based on the
Real-World RL suite [13]. Left: training with perturbed environment parameters. Each subplot
compares the effect of changing one parameter on training performance. Right: transfer under
disturbances, performance normalized with respect to undisturbed scenario. Bang-Bang and Gaussian
policies perform comparably, indicating similar robustness in simulation.

Figure 6: Pointmass exploration tasks. Top: the agent is reset every episode with no reward feedback.
Bottom: the agent always continues and receives different sparse rewards as indicated by the values
in the circles. Bang-Bang control leverages extreme actions yielding strong passive exploration,
unaffected by action penalties (top). This can facilitate escape from local optima and impede
stabilization at global optima (bottom). In sparse exploration tasks, action penalties may prevent the
agent from sufficient exploration when it is able to focus on minimizing action cost instead.

Control Suite While action penalties limit maximum performance of Bang-Bang policies, they
can also negatively affect exploration in Gaussians as observed in Figure 6. Exploration is hindered
whenever reward maximization is traded-off to minimize action cost. This behavior is favored by
sparse feedback, as the agent needs to actively explore to observe rewards. We compare performance
of Bang-Bang, Bang-Off-Bang, and Gaussian policies on three versions of the same tasks: dense,
sparse, and sparse with action cost (details on reward sparsification are provided in Appendix D).
Figure 7 provides learning curves for the Cartpole Swingup, Walker Walk, and Quadruped Run
domains. All three policy parameterizations perform similarly on the dense versions of the tasks. The
sparse Cartpole and Walker tasks without action cost yield similar converged performance for all
policies, while the Bang-Bang policy converges faster due to its strong passive exploration. On the
sparse tasks with action penalties, both the Gaussian and Bang-Off-Bang controllers are unable to
solve the task and focus on action cost minimization instead of exploring sufficiently in search of
reward (convergence to 0 returns). The Bang-Bang controller solves these tasks with steady-state
action cost, as it only selects maximum magnitude actions and effectively ignores the detrimental
impact of action penalties on exploration. This example further highlights the intricate interplay
between finding policies that avoid bang-bang behavior and enabling sufficient exploration.

8

Figure 7: Exploration under sparse reward feedback and action penalties for Bang-Bang, Bang-Off-
Bang, and Gaussian policies. While all three policy types perform comparably on the dense task
versions (column 1), Bang-Bang policies can yield faster convergence on sparse tasks due to passive
exploration arsing from extremal action selection (column 2). Furthermore, large action penalties can
limit exploration in favor of action cost reduction for the non-Bang-Bang policies (column 3).

Figure 8: Learning to swing-up a pendulum under no action cost (left) and quadratic cost (right). The
Bang-Bang policy converges faster without action penalties, the Gaussian yields higher returns with
action penalties. Learned policy mappings are overlayed with sample swing-up trajectories (black).

5.4.2 Action Penalties

Bang-Bang policies enable fast exploration and can arise as optimal controllers in the absence of
action cost. However, robotics applications may suffer from extensive extremal action selection and
action penalties can mitigate bang-bang behavior. We highlight these considerations on a pendulum
swing-up task with no and quadratic action cost in Figure 8. Without action cost (left), both Bang-
Bang and Gaussian policies learn to approximate the optimal action mapping and solve the task with
the Bang-Bang policy offering a faster rise time. With action cost (right), representing the minimum
energy category in optimal control (Section 3), the Bang-Bang policy is unable to represent the
optimal action mapping and continues to incur steady-state cost (see also Appendix F).

We investigate the effect of augmenting the reward function of the more complex Walker and
Quadruped tasks with action penalties. Here, we consider both quadratic cost to reduce action
magnitude and difference cost to increase smoothness. In the latter case, we augment the system state
by the previous action. Figure 9 (top) displays Gaussian means along a Quadruped Run trajectory
for the different penalty structures and their combination. We observe the desired effect of lower
magnitude and smoother transitions in the learned distributions. Figure 9 (bottom) provides training
curves under the different reward structures, performance based on the nominal reward function, and
transfer under disturbances (see Section 5.3) for the Walker (left) and Quadruped (right) tasks. We
note that while action penalties help to mitigate bang-bang behavior, robustness of the resulting gaits
is only slightly increased. Furthermore, the modified reward structure may yield reduced performance
of trained agents as measured by the nominal reward function and observed on the Quadruped.
These findings suggest that while potentially undesired bang-bang action selection can be reduced
by introducing action penalties, naive engineering of the reward structure may force the agent into
sub-optimal behaviors. The question then becomes what metrics to consider when evaluating agent
performance in light of transfer to real-world systems. Pure return maximization may exploit both
simulation and task peculiarities and is not sufficient for comparing the merit of different algorithms.

9

Figure 9: Impact of action penalties. Top: Gaussian means under varying penalties along a Quadruped
Run trajectory. Bottom: training and transfer performance on Walker (left) and Quadruped (right).
While action penalties help to mitigate bang-bang behavior, the resulting gaits only slightly increase
robustness and may reduce performance as measured by the nominal reward function (Quadruped).

6 Discussion

In this paper, we investigate the emergence of bang-bang behavior in continuous control reinforcement
learning and show that several common benchmarks can in fact be solved by bang-bang constrained
Bernoulli policies. We draw theoretical connections to bang-bang solutions from optimal control and
perform extensive experimental evaluations across a variety of state-of-the-art RL algorithms. In
particular, we theoretically derive when bang-bang control emerges for continuous-time systems with
deterministic dynamics and describe connections to continuous control RL problems considered here.

In our experiments, we find that many continuous control benchmarks do not require continuous
action spaces and can be solved (close to) optimally with learned bang-bang controllers for several
recent model-based and model-free, on-policy and off-policy algorithms. We further demonstrate
the efficiency of bang-bang control in more realistic variations of common domains based on the
Real-World RL suite [13] and demonstrate how action costs affect the optimal controller. Generally,
Bernoulli policies may be applicable when the dynamics act as a low-pass filter to sufficiently
smoothen the switching behavior. A key advantage can then be the reduction of the policy search space
fromRN to 2N withN = |A|, while the resulting extreme actions can favor coarse exploration. Since
exploration, learning and the final solution are entangled in RL, we perform additional experiments
with focus on behavioural cloning of a trained Gaussian controller to compare the performance of
bang-bang and continuous policies without the additional challenges arising from exploration. It is
important to note that we still require sampling-based optimisation, which has become popular to
handle continuous action spaces. However, the main reason is often not the continuous action space
but the potential high-dimensionality of the action space which would otherwise become intractable.

Benchmark design is a complex task with the goal of measuring progress that is transferable to
impactful real-world applications. We demonstrate that the learnt controllers for continuous control
benchmarks without action penalties can exhibit bang-bang properties which can be damaging to
real-world systems. At the same time, we also show that including action penalties can significantly
impact exploration for Gaussian policies. Integrating the impact of task design on both exploration as
well as final solution properties and investigating algorithms which can overcome local optima while
still learning smooth controllers is an important direction for future work.

Societal Implications: Improved understanding of emergent bang-bang behavior may broaden real-
world applicability of RL policies. While resulting approaches could be used in ways not intended by
the researchers there are many beneficial applications such as robotics for improved productivity and
workplace safety. Even desirable outcomes can come with side-effects such as job loss and societal
transformation costs. While the authors ultimately believe that societal benefits of this work outweigh
its harms, these considerations need to be re-evaluated on a constant basis as new applications emerge.

10

Acknowledgments and Disclosure of Funding

Tim Seyde, Igor Gilitschenski, Wilko Schwarting and Daniela Rus were supported in part by the
Office of Naval Research (ONR) Grant N00014-18-1-2830 and Qualcomm. This article solely reflects
the opinions and conclusions of its authors and not any other entity. We thank them for their support.
The authors further would like to thank Lucas Liebenwein for assistance with cluster deployment, and
acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for providing HPC
resources. We would also like to thank Murad Abu-Khalaf for insightful discussions as well as the
NeurIPS reviewers and program chairs for their helpful feedback and suggestions for improvement.

References
[1] A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa, D. Belov, N. Heess, and

M. Riedmiller. Relative entropy regularized policy iteration. arXiv preprint arXiv:1812.02256,
2018. 2, 5, 14

[2] C. W. Anderson. Learning to Control an Inverted Pendulum with Connectionist Networks. In
Proceedings of the American Control Conference (ACC), 1988. 2

[3] R. Bellman. Dynamic programming. Technical report, RAND CORP SANTA MONICA CA,
1956. 2

[4] R. Bellman, I. Glicksberg, and O. Gross. On the “bang-bang” control problem. Quarterly of
Applied Mathematics, 14(1), 1956. 2

[5] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013. 5, 15

[6] D. Bertsekas. Dynamic Programming and Optimal Control, volume 1. 4 edition, 2005. 3, 4

[7] S. Bohez, A. Abdolmaleki, M. Neunert, J. Buchli, N. Heess, and R. Hadsell. Value constrained
model-free continuous control. arXiv:1902.04623, 2019. 1, 2

[8] E. Casas, D. Wachsmuth, and G. Wachsmuth. Sufficient Second-Order Conditions for Bang-
Bang Control Problems. SIAM Journal on Control and Optimization, 55(5), 2017. 2

[9] E. Casas, D. Wachsmuth, and G. Wachsmuth. Second-Order Analysis and Numerical Approxi-
mation for Bang-Bang Bilinear Control Problems. SIAM Journal on Control and Optimization,
56(6), 2018. 2

[10] N. Chen, Y. Wang, and D.-H. Yang. Time-varying bang–bang property of time optimal controls
for heat equation and its application. Systems & Control Letters, 112, 2018. 2

[11] P.-W. Chou, D. Maturana, and S. Scherer. Improving stochastic policy gradients in continuous
control with deep reinforcement learning using the beta distribution. In International conference
on machine learning, pages 834–843. PMLR, 2017. 2

[12] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking Deep Reinforce-
ment Learning for Continuous Control. In International Conference on Machine Learning.
(ICML), 2016. 2

[13] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester. An
empirical investigation of the challenges of real-world reinforcement learning. arXiv preprint
arXiv:2003.11881, 2020. 7, 8, 10, 16

[14] G. Farquhar, L. Gustafson, Z. Lin, S. Whiteson, N. Usunier, and G. Synnaeve. Growing action
spaces. In International Conference on Machine Learning (ICML), 2020. 2

[15] S. Fujimoto, D. Meger, and D. Precup. Off-Policy Deep Reinforcement Learning without
Exploration. In International Conference on Machine Learning (ICML), 2019. 2

[16] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning (ICML), 2018. 2, 5, 14

[17] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. Technical report, 2018.
14

11

[18] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193, 2020. 2, 5, 14

[19] B. J. Hodel. Learning to Operate an Excavator via Policy Optimization. Procedia Computer
Science, 140, 2018. 2

[20] M. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, F. Behbahani, T. Norman, A. Abdol-
maleki, A. Cassirer, F. Yang, K. Baumli, S. Henderson, A. Novikov, S. G. Colmenarejo, S. Cabi,
C. Gulcehre, T. L. Paine, A. Cowie, Z. Wang, B. Piot, and N. de Freitas. Acme: A research
framework for distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020. 14

[21] S. H. Huang, M. Zambelli, J. Kay, M. F. Martins, Y. Tassa, P. M. Pilarski, and R. Hadsell.
Learning Gentle Object Manipulation with Curiosity-Driven Deep Reinforcement Learning.
arXiv:1903.08542, 2019. 1, 2

[22] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016. 15

[23] W. Jaśkowski, O. R. Lykkebø, N. E. Toklu, F. Trifterer, Z. Buk, J. Koutník, and F. Gomez.
Reinforcement Learning to Run... Fast. In S. Escalera and M. Weimer, editors, NIPS 2017
Competition Book. Springer, Springer, 2018. 2

[24] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd, P. Abeles, D. Stephen,
N. Mertins, A. Lesman, et al. Team ihmc’s lessons learned from the darpa robotics challenge
trials. Journal of Field Robotics, 32(2):192–208, 2015. 15

[25] E. Joos, F. Péan, and O. Goksel. Reinforcement Learning of Musculoskeletal Control from
Functional Simulations. In Medical Image Computing and Computer Assisted Intervention
(MICCAI), 2020. 2

[26] Ł. Kidziński, S. P. Mohanty, C. F. Ong, Z. Huang, S. Zhou, A. Pechenko, A. Stelmaszczyk,
P. Jarosik, M. Pavlov, S. Kolesnikov, et al. Learning to run challenge solutions: Adapting
reinforcement learning methods for neuromusculoskeletal environments. In The NIPS’17
Competition: Building Intelligent Systems, pages 121–153. Springer, 2018. 2

[27] D. E. Kirk. Optimal control theory: an introduction. Courier Corporation, 2004. 3, 4, 14

[28] A. B. Kordabad, W. Cai, and S. Gros. MPC-based Reinforcement Learning for Economic Prob-
lems with Application to Battery Storage. In Proceedings of the European Control Conference
(ECC), 2021. 1

[29] K. Kunisch and L. Wang. The bang-bang property of time optimal controls for the Burgers
equation. Discrete & Continuous Dynamical Systems, 34(9), 2014. 2

[30] J. Lambert and M. Levine. A two-stage learning control system. Trans. on Automatic Control,
15(3), 1970. 2

[31] J. Lasalle. The ‘bang-bang’ principle. IFAC Proceedings Volumes, 1(1):503–507, 1960. ISSN
1474-6670. doi: https://doi.org/10.1016/S1474-6670(17)70095-X. 1st International IFAC
Congress on Automatic and Remote Control, Moscow, USSR, 1960. 1, 2

[32] J. P. LaSalle. Time Optimal Control Systems. Proceedings of the National Academy of Sciences,
45(4), 1959. 2

[33] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion
over challenging terrain. Science robotics, 5(47), 2020. 15

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In International Conference on Learning
Representations (ICLR), 2016. 2

[35] J. Lohéac and M. Tucsnak. Maximum Principle and Bang-Bang Property of Time Optimal
Controls for Schrödinger-Type Systems. SIAM Journal on Control and Optimization, 51(5),
2013. 2

[36] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016. 15

[37] L. Manita. Optimal operating modes with chattering switching in manipulator control problems.
Journal of Applied Mathematics and Mechanics, 64(1), 2000. 4

12

[38] H. Maurer, C. Büskens, J.-H. R. Kim, and C. Y. Kaya. Optimization methods for the verification
of second order sufficient conditions for bang–bang controls. Optimal Control Applications and
Methods, 26(3), 2005. 2

[39] A. Münch and F. Periago. Numerical approximation of bang–bang controls for the heat equation:
An optimal design approach. Systems & Control Letters, 62(8), 2013. 2

[40] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare. Safe and efficient off-policy
reinforcement learning. arXiv preprint arXiv:1606.02647, 2016. 14

[41] G. Novati and P. Koumoutsakos. Remember and Forget for Experience Replay. In International
Conference on Machine Learning (ICML), 2019. 1, 2

[42] F. Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.
arXiv preprint arXiv:2011.07537, 2020. 14

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017. 2, 5, 14

[44] T. Seyde, W. Schwarting, S. Karaman, and D. Rus. Learning to plan optimistically: Uncertainty-
guided deep exploration via latent model ensembles. arXiv preprint arXiv:2010.14641, 2020.
15

[45] L. M. Sonneborn and F. S. Van Vleck. The Bang-Bang Principle for Linear Control Systems.
Journal of the Society for Industrial and Applied Mathematics Series A Control, 2(2), 1964. 2

[46] B. Stellato, T. Geyer, and P. Goulart. High-speed finite control set model predictive control for
power electronics. IEEE Trans. on Power Electronics, 32(5), 2017. 3

[47] B. Stellato, S. Ober-Blöbaum, and P. Goulart. Second-order switching time optimization for
switched dynamical systems. IEEE Trans. on Automatic Control, 62(10), 2017. 3

[48] Y. Tang and S. Agrawal. Discretizing Continuous Action Space for On-Policy Optimization. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2020. 2

[49] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez,
T. Lillicrap, and N. Heess. dm_control: Software and tasks for continuous control, 2020. 5

[50] A. Tavakoli, F. Pardo, and P. Kormushev. Action Branching Architectures for Deep Reinforce-
ment Learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2018.
2

[51] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi. Model-Based Reinforcement Learning
for Closed-Loop Dynamic Control of Soft Robotic Manipulators. IEEE T-RO, 35(1), 2019. 1, 2

[52] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012. 14

[53] M. Waltz and K. Fu. A heuristic approach to reinforcement learning control systems. IEEE
TACON, 10(4), 1965. 2

[54] C. Wang, Y. Wu, Q. Vuong, and K. Ross. Striving for simplicity and performance in off-policy
drl: Output normalization and non-uniform sampling. In International Conference on Machine
Learning, pages 10070–10080. PMLR, 2020. 2

[55] G. Wang and Y. Zhang. Decompositions and bang-bang properties. Mathematical Control &
Related Fields, 7(1), 2017. 2

[56] M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. T. Springenberg, M. Neunert, N. Siegel, T. Her-
tweck, T. Lampe, N. Heess, and M. Riedmiller. Compositional Transfer in Hierarchical
Reinforcement Learning. In Robotics: Science and Systems (RSS), 2020. 2

[57] D.-H. Yang, B.-Z. Guo, W. Gui, and C. Yang. The Bang-Bang Property of Time-Varying
Optimal Time Control for Null Controllable Heat Equation. Journal of Optimization Theory
and Applications, 182(2), 2019. 2

[58] Y. Yue, Y. Tang, M. Yin, and M. Zhou. Discrete action on-policy learning with action-value
critic. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020. 2

[59] J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry. Zeno hybrid systems. International
Journal of Robust and Nonlinear Control, 11(5), 2001. 4

13

A Minimum-fuel cost (MF) derivation

When c(a(t)) = |a(t)|, from Pontryagin’s maximum principle [27, Sec. 5.5], the necessary optimality
condition for action a?(t) ∈ A and 0 ≤ t ≤ T is

H(s?(t), a?(t), p?(t)) ≥ H(s?(t), a(t), p?(t)), ∀a(t) ∈ A,
therefore, − |a?(t)|+ p?(t)T g(s?(t))a?(t) ≥ −|a(t)|+ p?(t)T g(s?(t))a(t), ∀a(t) ∈ A.

To maximize the right-hand side, a(t) must solve the following linear optimization problem

maximize z + p?(t)T g(s?(t))a(t)
subject to z ≤ a(t) ≤ −z

−1 ≤ a(t) ≤ 1,
(1)

where a(t) and z are the optimization variables. Figure 1 on the right shows the feasible region
of (1) and the corresponding cost function gradient (p?(t)T g(s?(t)), 1). If p?(t)T g(s?(t)) < −1, the
solution corresponds to vertex (a?(t), z?) = (−1,−1), while, if p?(t)T g(s?(t)) > 1, the solution
ends up at vertex (a?(t), z?) = (1,−1). In case −1 < p?(t)T g(s?(t)) < 1, the maximum is attained
at (a?(t), z?) = (0, 0). Finally, if p?(t)T g(s?(t)) = 1, any 0 ≤ a(t) ≤ 1 and z = −a(t) achieve
the maximum. Similarly, if p?(t)T g(s?(t)) = −1, any −1 ≤ a(t) ≤ 0 and z = a(t) achieve the
maximum. The last two cases correspond to cost function gradients perpendicular to the faces of the
feasible region. In linear optimization, these cases give is an infinite number of optimal solutions
between two adjacent vertices.

B Baseline Algorithms and Gradient Estimation

B.1 Baseline Algorithms

We provide a brief discussion of the baseline algorithms below. The libraries our implementations are
based off for PPO, SAC, and DreamerV2 are available under the MIT License, and the base MPO
implementation under the Apache License 2.0. For MuJoCo [52], we used a Pro Lab license.

PPO Proximal Policy Optimization [43] is a model-free on-policy algorithm. It aims to maximize
expected improvement while guarding against policy collapse by limiting the policy update magnitude.
Here, we consider PPO with a clipped surrogate objective and early stopping based on the mean
KL-divergence from the previous policy. Our implementation is based on the Tonic library [42].

SAC Soft Actor Critic [16] is a model-free off-policy algorithm. It aims to maximize expected
improvement on an entropy-regularized objective and implicitly trades off exploration with exploita-
tion. Here, we optimize the entropy coefficient α and leverage the clipped double-Q trick to stabilize
learning. We build on the SAC implementation provided by the Softlearning library [17].

MPO Maximum a Posteriori Policy Optimization [1] is a model-free off-policy algorithm. It
alternates between a KL-regularized optimization of a non-parametric policy on samples from the
state-action value function and fitting a parametric policy to this non-parametric target. We leverage
decoupled KL-constraints in optimizing the parametric policy and employ Retrace [40] for learning
the state-action value function. We extend the implementation provided by the Acme library [20].

DreamerV2 DreamerV2 [18] is a model-based off-policy algorithm. It learns a recurrent latent
variable model based on visual inputs and optimizes the policy on entropy-regularized λ-returns from
model rollouts. We follow the original authors in parameterizing the baseline policy as a diagonal
truncated Gaussian for continuous control. Our implementation builds on the DreamerV2 codebase.

Bijectors The underlying distributions are mapped to the environments’ action spaces via a bijector.
This consist of a shift and scale operations for Categorical and Gaussian policies, while the latter may
additionally leverage a tanh bijector.

14

Algorithm 1 Reparameterization gradient for Gaussian
1 mean, scale = network(inputs) # conditional moments
2 sample = gaussian(0.0, 1.0) # sample without gradient
3 sample = mean + scale * sample # sample with moments gradient
4 action = bijector(sample) # transform to action space

Algorithm 2 Straight-through gradient for Categorical
1 probs = network(inputs) # conditional probabilities
2 sample = one_hot(probs) # sample without gradient
3 sample = sample + probs - no_gradient(probs) # sample with probs gradient
4 action = bijector(sample) # transform to action space

B.2 Gradient Estimation for Stochastic Computation Graphs

Random sampling operations are generally not differentiable. To enable backpropagation through
stochastic policies, we leverage the common reparameteriztion trick for Gaussian policies in Al-
gorithm 1. For Categorical policies, we apply the biased straight-through gradient estimator [5] in
Algorithm 2. We also tried the Gumbel-Softmax estimator [22, 36], but did not find this to improve
performance. The optimization procedure employed by MPO bypasses the need for gradient estima-
tion via reparameterization, which particularly reduces bias when optimizing Categorical policies.

C Training Details

Experiments were each conducted on 4 CPU cores in combination with 1 GPU (NVIDIA V100).
All reported means and standard deviations are based on 4 runs differing in their random seeds. To
estimate transfer performance, we computed mean and standard deviation across 5 runs per seed for
a total of 20 trajectories as disturbances are probabilistic. Throughout, we consider episodes with
the standard length of 1000 timesteps. For the experiments that down-sample the control frequency,
we kept the episode duration constant and adapted the number of steps per episode accordingly.
Throughout, we use the default parameters from each algorithm codebase. For MPO, we bound the
non-Gaussian policy parameters in the decoupled KL constraint by ε = 0.1. For PPO, we found that
learning distinct scale parameters per action dimension improves performance for Gaussian policies.
The environments considered here operate at a default control frequency of 40Hz to 100Hz, while
real-world systems may even run the control loop at frequencies above 100Hz [24, 33].

D Sparse environments

Cartpole The two sparse versions use the original Cartpole Swigup Sparse task. The dense version
is constructed by taking the original Cartpole Swingup task and removing both action and velocity
penalties from the reward function to create a dense version of the sparse task.

Walker The dense version uses the original Walker Walk task. The sparse versions are created by
thresholding step rewards at rth = 0.5, setting all rewards below to 0 and re-mapping rewards above
to [0, 1], as in [44]. The sparse reward is given by rsparse = clip(rdense− rth, 0, 1− rth)/(1− rth).

Quadruped The dense and sparse task versions follow the procedure outlined for Walker Walk. For
the Gaussian policy on the Sparse + Penalty version we consider only 3 seeds as one run terminated.

Action Penalty We use a quadratic action cost (ME type) to generate the reward r̂ = r−0.5a2/|A|.

15

Disturbance Control Frequency Obs. Stuck Obs. Drop Obs. Delay Obs. Noise
Parameters Cart. ; Walk. ; Quad. Prob. ; Steps Prob. ; Steps Steps Std. Dev.
Value ×0.1 ; ×0.2 ; ×0.25 0.05 ; 5 0.05 ; 5 6 0.3

Table 3: Disturbances considered to evaluate transfer robustness in Sections 5.3 & 5.4.2.

E Disturbance Parameters

The experiments on transfer robustness in Sections 5.3 & 5.4.2 use the disturbance parameters in
Table 3. The control frequency disturbance down-samples the control by the value indicated for the
Cartpole, Walker, and Quadruped domains. For the observation disturbances, we selected the medium
disturbances from the Real-World RL Challenge framework [13]. The Stuck sensor disturbance does
not update a sensor reading for several timesteps, while the Dropped sensor disturbance zeros a sensor
reading for several timesteps. Both disturbances are probabilistic, taking effect with probability 0.05
and lasting for 5 timesteps. The observation delay shifts all observation by 6 timesteps, while the
observation noise applies additive white Gaussian noise with standard deviation 0.3.

F Additional Experiments

We provide additional empirical insights into how the reward structure, in conjunction with action
costs, affects both optimal policy parameterization and exploration. Additionally, we evaluate
benchmark performance of Bang-Off-Bang policies for MPO and show the distribution of actions for
converged Gaussian policies along trajectories on additional seeds.

F.1 Optimal Policy under Varying Action Cost

We expand our study of optimal policy design for the pendulum swing-up task in Figure 8. In
addition to the minimum state (MS) and minimum energy (ME) reward structures, we further
consider minimum fuel (MF) type rewards through introduction of an absolute value action penalty.
Figure 10 provides learned policy mappings and performance curves for Bang-Bang, Bang-Off-Bang,
and Gaussian policies. The action cost differs by row, where the corresponding optimal policy
parameterization is highlighted in green. While the Gaussian can represent the optimal policy in
each scenario, its increased expressiveness can require more samples for convergence. This can be
observed for the MS reward structure, where Bang-Bang control is optimal (top row, right). Similarly,
Bang-Off-Bang policies can suffer from slower exploration due to the high probability of choosing 0
actions (see also Section 5.4, Figure 6). This can be observed for the MF reward structure, where the
Gaussian policy converges much faster than the Bang-Off-Bang policy (middle row, right). Generally,
the Bang-Bang policy enables fast convergence due to its passive exploration (Section 5.4, Figure 6),
but incurs steady-state cost when the objective includes action penalties.

F.2 Benchmarking Bang-Off-Bang Control

We provide additional benchmarking results for Bang-Off-Bang policy heads on MPO in Figure 11.
Bang-Bang, Bang-Off-Bang, and Gaussian policies perform similarly across most tasks considered.
Bang-Bang policies converge faster than Bang-Off-Bang policies due to their exclusion of 0 actions
which forces stronger passive exploration (e.g. Cartpole Sparse, Walker Walk). However, Bang-Off-
Bang policies can leverage 0 actions to avoid steady-state action cost (e.g. Cartpole Swingup).

F.3 Additional Action Distribution Data

We provide distributions of aggregated actions along trajectories for additional seeds in Figure 12.
On tasks without action penalties, the Gaussian policies tend to exhibit strong bang-bang behavior
sampling actions close to the minimum or maximum bounds (Finger, Walker, Quadruped). Inclusion
of action penalties can reduce emergence of bang-bang solutions, while introducing additional trade-
offs with respect to performance on the original objective and exploration capabilities (Sections 5.4.2
& 5.4.1). On Cartpole Swingup, which includes action cost, the Gaussian agent still uses bang-bang
action selection during swing-up and only switches to low-magnitude actions for stabilization at the

16

Figure 10: Learning to swing-up a pendulum under varying action cost. Top to bottom: dense
reward function without action cost, with absolute value action cost, and with squared action cost.
Columns 1-4 provide the policy mapping computed via Value Iteration and learned via Bang-Bang,
Bang-Off-Bang and Gaussian policies, respectively. Column 5 compares performance. The optimal
policy parameterization for each action cost (row) is highlighted (green). In RL problems, the ideal
parameterization might not yield the best learning dynamics (Bang-Off-Bang vs. Gaussian, row 2).

Figure 11: Comparison of Bang-Bang, Bang-Off-Bang, and Gaussian policy heads for MPO on
continuous control tasks. The policies perform similarly on most tasks, while the Bang-Bang policy
can incur steady-state action cost (e.g. Cartpole Swingup). The Bang-Off-Bang policy leverages the
0 action to avoid this steady-state penalty at the risk of reducing convergence speed (Cartpole tasks).

top. On Humanoid Walk, emergence of bang-bang behavior differs both across action dimensions
and seeds. This further underlines that static action penalties do not necessarily guard against local
optima that can solve a task sufficiently well by relying, at least in part, on large control switches.

F.4 Action Penalties

Figure 13 provides an enlarged version of Figure 9 for improved readability.

17

Figure 12: Distribution of actions for MPO on additional seeds. We consider 11 bins per action
dimension and aggregate over 1000 steps. The Gaussian policy exhibits bang-bang behavior in several
domains, while presence of action penalties on Cartpole and Humanoid reduces this to some extent.

Figure 13: Training and transfer performance on Walker (top) and Quadruped (bottom). While action
penalties help to mitigate bang-bang behavior, the resulting gaits only slightly increase robustness
and may reduce performance as measured by the nominal reward function (Quadruped).

18

	1 Introduction
	2 Related Work
	3 Optimal Control with Continuous-Time Deterministic Dynamics
	4 Reinforcement Learning Preliminaries
	5 Experiments
	5.1 Algorithms
	5.2 Solving Continuous Control Problems with Bang-Bang Policies
	5.2.1 Disentangling Exploration and Final Solution

	5.3 Robustness Under Perturbations
	5.4 Characteristics of Bang-Bang Control in RL settings
	5.4.1 Intrinsic Exploration of Sparse Rewards
	5.4.2 Action Penalties

	6 Discussion
	A Minimum-fuel cost (MF) derivation
	B Baseline Algorithms and Gradient Estimation
	B.1 Baseline Algorithms
	B.2 Gradient Estimation for Stochastic Computation Graphs

	C Training Details
	D Sparse environments
	E Disturbance Parameters
	F Additional Experiments
	F.1 Optimal Policy under Varying Action Cost
	F.2 Benchmarking Bang-Off-Bang Control
	F.3 Additional Action Distribution Data
	F.4 Action Penalties

