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Abstract— Temporal patterns (how vehicles behave in our ob-
served past) underline our reasoning of how people drive on the
road, and can explain why we make certain predictions about
interactions among road agents. In this paper we propose the
ConceptNet trajectory predictor - a novel prediction framework
that is able to incorporate agent interactions as explicit edges
in a temporal knowledge graph. We demonstrate the sample
efficiency and the overall accuracy of the proposed approach,
and show that using the graphical structure to explicitly model
interactions enables better detection of agent interactions and
improved trajectory predictions on a large real-world driving
dataset.

I. INTRODUCTION

Predicting the behavior of human road agents remains a
challenge. This problem is further complicated by the large
number of agents acting at a vehicle’s vicinity, and the large
set of possible actions they could take, separately or jointly,
over the prediction horizon. We often use patterns to reason
about human behavior on the road – such patterns include
different multi-agent interactions [1], [2], [3], maneuvers [4],
rules[5], [6], and other semantics [7], [8], [9], [10], [11], [12].
These patterns can overlap in a myriad of ways and involve
different number of elements from the scene – consider
in Fig. 1 the interaction of the left turning ego vehicle
(red) with an oncoming vehicle (highlighted blue vehicle)
that it has to yield to. The grey dotted lines represent past
trajectories, yellow represents future. The lines connecting
the ego vehicle to other vehicles represent neighbors that the
ego vehicle is paying attention to. Such an example requires
the ego vehicle to reason about the scene and the interactions
among its surrounding vehicles in order to make a reasonable
prediction of other vehicles’ behaviors.

One way to capture knowledge about the world involves
knowledge graphs [13]. In knowledge graphs, knowledge is
represented as a set of entities and relations with specific
semantics. This allows a general representation about the
world and entities in it. However, often these graphs are
applied to datasets of static knowledge such as texts, rather
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Fig. 1. An example scenario in which the left turning ego vehicle
(red) with an oncoming vehicle (blue vehicle highlighted in orange circle)
that it has to yield to. The grey dotted lines represent past trajectories,
yellow represents future. The lines connecting the ego vehicle to other
vehicles represent neighbors that the ego vehicle is paying attention to.
Such an example requires the ego vehicle to reason about the scene and the
interactions among its surrounding vehicles in order to make a reasonable
prediction of other vehicles’ behaviors. The camera image is in the ego
vehicle’s view.

than temporal and dynamic knowledge such as observations
of real-life interactions.

We use a knowledge graph [14] with a spatio-temporal
graph structure that estimates an interaction state associated
with each (directed) pair of agents in the graph. This allows
us to embed relations within the graph, and afford reasoning
about road agent trajectories. We use the temporal graph
in both the analysis and synthesis parts of an encoder-
decoder based trajectory predictor. The graph allows us to
place a structural prior on the predictions that can take
high-level interaction semantics into account. That structure
allows for accurate and data efficient representations learning
for the prediction task, as well as seamless merging of
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discrete detections and continuous predictions in the same
representation.

Our Contributions are as follow:
• We propose the ConceptNet predictor - a trajectory pre-

diction framework for capturing high-order interaction
concepts (e.g. lead-follow, yielding, etc) via a temporal
knowledge graph;

• We show how to leverage this framework within a
encoder-decoder based trajectory predictor;

• We demonstrate how incorporating explicit high-level
concepts (interactions in the case of autonomous driv-
ing, eg. concepts like Car 2 yields to Car 1) within
the predictor allows for better prediction. and show the
trade-off of labeled and unlabeled data on large driving
datasets.

II. RELATED WORKS

Trajectory prediction has become a key area of research
and heavily impacts autonomous driving. Within trajectory
prediction, several approaches have been used to capture
structural priors in the agent behaviors which includes ma-
neuvers [4], rules [5], [6], multi-modality [15] and dynamic
models [16].

Interactions with neighboring agents [1], [3], [10] is an-
other important aspect that affect driver behaviors. Graphs
is a natural means of modeling agent interactions and have
been widely used in trajectory prediction. In computer vision
and audio processing field, traditional Bayesian graphs have
been adopted to model the human behaviour [17], [18],
[19], [20], [21], where each node represents an individual
person. In addition to that, the authors of [22] use a set
of nodes to represent spatial coordinates of road-agents and
weighted undirected edges to connect two agents if they
are within a thresholded distance. In [16], the authors use
nodes to model various agent types (car, bus, pedestrians, etc)
and directed edges to model their influences to each other
(directed edge takes into account perception distance). This
type of node/edge presentation is common in the trajectory
forecasting literature. The graph network in our work is
different in that our edges represent explicit interactions
between two vehicle and is able to intake auxiliary guidance
(interaction labels) during training. During inference, out
predictor operates on two levels - first it predicts the high-
level interaction semantics between any two vehicles in the
graph and then this information is used to generate trajectory
predictions. We show that this explicit modeling of interac-
tions along with interaction labels during training improves
the predictor’s performance as well as explainability.

More broadly, graphical knowledge representation has
been extensively studied in both the knowledge represen-
tation community [13], [23] and more recently in a growing
community centered around graph neural networks [24],
[25], [26], [27], [28], [29]. It has also been applied to the
inductive physics fields for learning the concepts in physics
[30], [31], [32]. Most of the works in knowledge graphs
involves static information, and does not rely on sensor data
streams, nor inference and predictions from these streams.

The spatial-temporal graph neural network is first applied to
surgical analysis [33]. In this work we improve the model
and convert it for use in vehicle trajectory predictions.

III. CONCEPT NETWORK

In this section, firstly, we formulate the trajectory predic-
tion problem and introduce a single agent prediction model.
Then we present in detail the proposed ConceptNet for multi-
agent trajectory and interaction predictions.

A. Problem Formulation

We focus on the trajectory prediction problem in driving.
It is defined as given a set of past trajectories of the
driving agents, a predictor tries to estimate the distribution
the future trajectories. In a driving scene, assume there are
N agents. We observe the past TP steps of trajectories,
which are represented by {St}0t=TP

. At each time step,
St = [s0t . . . s

N
t ]. We include in St all agents’ positions,

as well as map information. Our goal is to correctly predict
the distribution of {St}TF

t=0, within the next TF frame of
these agents. In addition to predicting the agents’ positions,
we would also like to predict the interactions between the
entities. Each interaction in the scene is represented by a
semantic label and let L be a set of L labels that describe
semantics at different time points in the future. (e.g. “vehicle
A is yielding to vehicle B at 0.5 seconds”). In a labeled
trajectory prediction problem, we must predict the semantic
labels correctly, in addition to predicting the trajectories.

B. Single Agent Predictor

Sequential encoder-decoder frameworks are well explored
in the single agent prediction task. In such a framework,
the encoder employs past information and the decoder tries
to emit the future predictions. In a sequential data predic-
tion problem, long-short term memory (LSTM) units are
commonly used. In this case, the agent is represented by
a sequence-to-sequence model described below.
Encoder The encoder is an LSTM, which takes the past
vehicle trajectories S and velocities as inputs and aggregates
all the past information into the last encoder hidden state. An
agent-centered raster map is fed into a map encoder for map
features. The map feature is further concatenated with the
last encoder hidden state. A fully-connected layer is applied
project the concatenated feature to dimension M .
Decoder The decoder is also an LSTM. It takes the concate-
nated feature to initialize its hidden state. At each time step,
the decoder emits a two-dimensional position of the agent in
an autoregressive fashion.

C. Multi-Agent Prediction with ConceptNet

Different from a single agent predictor, we introduce a
multi-agent graph neural network based predictor, modeling
the agents’ dynamics as well as the interactions among them.
The graph neural network H is defined as:

H = (V,E) (1)

where v ∈ V are graph nodes, that represent entities
(such as agents or map elements), and graph edges e ∈

8993



FC

FC

CNN 
feature 

extractor

Raster image

EncoderAgent 1

Agent 2

Agent 3

DecoderFC

Predicted 
trajectories

Agent 1

Agent 3Agent 2

Follow

FollowYield

Node to edge

edge to node

Fig. 2. The overview of the ConceptNet trajectory predictor. Each agent is represented by a node (circle) and each interaction is represented by an
edge (diamond). Messages at first pass from node to edge to aggregate the node information to infer the interactions, then the information pass back to
nodes throughout the edge-to-node message passing. Each node is an encoder-decoder predictor.

E represent relations between entities, with some defined
interaction semantics (e.g. agent 1 follows agent 2). The
detailed description of nodes and edges is as follows:
Nodes Each node follows a single agent encoder-decoder
described in III-B. In practice, the LSTM hidden state
dimension is M = 32 for all the nodes. They are the same for
both encoders and decoders. A node LSTM should not only
receive its own trajectory information as input, it should also
receive the neighbour information through edges, depending
on the activation of the interactions. If an interaction between
the current node Vt,n and a neighbour node Vt,m is activated,
the interaction edge should aggregate the information from
both nodes and send the aggregated information back.
Edges As interactions among agents vary with time, the
edge network should also be able to capture the temporal
variations of the interactions. To achieve this, each edge
is also designed as an LSTM encoder-decoder. Each edge
has an independent hidden state, which is represented by
the vector etk ∈ Rde at time t. Therefore the LSTM input
is a concatenation of (i) the agents’ hidden states which
are involved in the interaction, e.g. ’agent 1 yields agent
2’ involves both ’agent 1’ and ’agent 2’ (ii) The relative
positions between the two agents. The output of the LSTM
is the probability of whether agent 1 is yielding to agent 2.
Message Passing Message passing is a key component to
interaction modeling. It can be categorized into node-to-edge
passing and edge-to-node passing. We first compute an edge
update step, which is to aggregate the node information into
interaction features:

e
t+1/2
k = φE(etk, v

t
r, v

t
s, u

t) (2)

where φE is the edge LSTM, vtr, v
t
s are the nodes which are

involved in the interaction, and ut is the relative position
between the nodes. After aggregating node information, an
edge-to-node aggregation step is applied. The edge-to-node
aggregation step aims to transfer the interaction information
back to nodes. formally written as:

ēt+1/2
n = ρe→v(E′n

t+1/2)

vt+1
n = φV (ēt+1/2

n , vtn) (3)

where ρe→v is a feed-forward network that maps the edge
feature E′n

t+1/2 to node n. Then the node LSTM φV takes
the projected feature ēt+1/2

n as input and evolves temporally.
The temporal process of the node LSTM and edge LSTM
are formally written as:

φV (ēt+1/2
n , vtn, u

t) = LSTM(hv,k, ēt+1/2
n ))

φE(etk, v̄
t
r, v̄

t
s, u

t, It) = LSTM(hv,k, v̄tr, v̄
t
s)) (4)

where φV is the node LSTM.

D. Network Emissions

The model is able to generate from different hidden states
both spatial and temporal emissions according to the task.
Temporal emissions are generated by an emission head from
the edges LSTM hidden state, which indicates the existence
of a single interactions.
Spatial emissions come from the hidden states of the nodes,
which is in dimension 2, indicating the 2D position of the
agents.

IV. EXPERIMENTS

NuScenes Dataset. We use the NuScenes dataset [34] for
training and evaluation. The dataset contains 1000 scenes of
20s each. It also includes rich semantic information including
23 object classes (pedestrian, vehicle, etc) and HD maps with
11 annotated layers (lanes, walkways, etc).
Method of Evaluation. The first metric we use is the average
displacement error (ADE) - average L2-norm between the
predicted and ground truth trajectories. ADE measures how
well our model is able to generate trajectories that mimic
those from the human demonstrators in the dataset. The
second metric is the final displacement error (FDE) - the L2
distance between the final points of the prediction and ground
truth ; the third is max displacement error (MaxDist) - the
maximum point-wise L2 distance between the prediction
and ground truth. This measures the largest error for each
prediction and lastly the semantic accuracy (SA) - calculated
by the number of true interactions divided by the number of
predicted interactions.
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Fig. 3. Example scene predictions. the ego vehicle (red) along with its 4 nearest neighbor (blue) vehicles (within a range of 40 meters) are connected
into a graph (connection shown as light blue lines) which is used to construct the ConceptNet. The yellow dot-dash lines are the ground truth future
trajectories. The red dotted trajectories are the predictions. The graph on the top-left hand corner of each scenes illustrates the output of the ConceptNet
at this instant in time. Here the ConceptNet predicts interactions between vehicles in graph through the nodes follows and yields. The edges are thickened
and colored if an interaction is predicted to occur. For example, in Figure 3 (a), ConceptNet predicts that “c58cc follows ego” and “946bc yields c58cc”.

TABLE I
PERFORMANCE METRIC COMPARISONS

Model ADE (m) FDE (m) MaxDist (m)
mean 90th mean 90th mean 90th

CoverNet 4.01 8.34 7.97 17.87 8.17 17.89
No-ConceptNet 2.80 4.9 5.47 10.4 5.57 10.41

ConceptNet 2.18 4.66 4.72 11.01 4.78 11.01

Comparison Cases. We use the following settings for com-
parison and ablation - ConceptNet: this corresponds to the ar-
chitecture in Figure III; No-ConceptNet: this corresponds to
the architecture in Figure III without ConceptNet; Covernet
- this is the architecture proposed in [35]. We also conduct
a set of self-abalation studies which will be discussed in the
results section.
Creating interaction labels. To guide the learning of high-
level interactions, we need to create interaction labels from
low-level data (trajectories, speed, steering, etc). In this work,

we generate two types of interactions - follow and yield.
Suppose we have 2 vehicles a1 and a2. a1 is said to follow
a2 if they satisfy (a) the angle between the direction of their
velocities is less than a threshold a1 and (b) they are traveling
along the same lane. a1 is said to yield to a2 if (a) a1’s speed
is less than a threshold (slowing down), (b) the angle between
2 cars’ velocities is larger than a threshold (not traveling
along or against each other) and (c) the (extended) future
trajectory of a1 intersects that of a2 (both cars trying to cross
the same intersection). Our graph network is not limited to
the number of nodes in the graph. In practice, to facilitate
the training processes the interactions of a maximum of 4
vehicles at a time, therefore, we generate follow and yield
interaction labels for all (directed) pairs of vehicles within
the graph.

Results and Discussion. In Figure 3, we show 4 example
scenes that showcase the capabilities of our predictor. In
each scene, the ego vehicle (red) along with its 4 nearest
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Fig. 4. Example execution traces at testing time. To make the figures more legible, we keep only the predictions (red dotted trajectories) and the vehicle
connections (blue lines). Both traces focus on the more interesting case of yielding.

Fig. 5. Sample efficiency study. We trained our model along with comparison models at different fractions of the training dataset (25%, 50%, 75%,
100%). Validation set remains the same. The results are shown in Figure 5. To help with visualization, the box plots are constructed from data up to the
90th percentile of their individual distributions (major outliers are discarded).

TABLE II
ABLATION STUDY. THE PERFORMANCE OF DIFFERENT MODEL CONFIGURATIONS IS EVALUATED. BY USING ALL OF THE INTERACTION SUPERVISION

LABELS, THE PROPOSED MODEL HAS ACHIEVED THE BEST PERFORMANCE.

ADE (m) FDE (m) Max Distance (m) SA (%)
No relations 2.8 5.4 5.5 -

No interaction labels 2.6 5.4 6.0 -
Attention on edges 2.3 5.0 5.1 -

Node-to-node 2.2 4.9 5.0 -
Yield-relation only 2.2 4.7 4.8 67.2%

Follow-relation only 2.3 5.2 5.3 55.4%
Proposed 2.1 4.8 4.8 73.4%

neighbor (blue) vehicles (within a range of 40 meters) are
connected into a graph (connections shown as light blue
lines) which is used to construct the ConceptNet. The yellow
dot-dashed lines are the ground truth future trajectories. The
red dotted trajectories are the predictions. The graphs on the
top-left hand corner of each scene illustrates the output of
the ConceptNet at this instant in time. Here the ConceptNet
predicts interactions between vehicles through nodes follows
and yields. The edges are thickened and colored if an
interaction is predicted to occur. For example, in Figure

3 (a), ConceptNet predicts that “c58cc follows ego” and
“946bc yields c58cc”. We can see that these two interaction
predictions result in the correct behaviors in trajectory terms.
Agent c58cc’s predicted trajectory is closely in line with that
of the ego vehicle. And agent 964bc’s trajectory is predicted
to slow down to let c58cc to pass. This set of scenes shows
that our predictor is able to reasonably predict the high-
level interactions between vehicles in its graph and use this
prediction to aid the generation of trajectory forecasts. In
Figure 3 (b), the network predicts that agent 946bc both
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follows and yields to agent c58cc. This is an interesting
prediction given that both are true. In this case, agent 946bc
is yielding for c58cc to pass and it’s also planning to turn left
(shown by the ground truth trajectory) into the same lane as
c58cc which takes it into a following behavior. Our predictor
is able to capture both interactions.

To study the effectiveness of ConceptNet, we compare our
architecture with and without ConceptNet along with an off-
the-shelf predictor (CoverNet [35]). The results shown in
Table I indicates that adding ConceptNet yields a significant
improvement in most evaluation metrics. This is due to the
fact that ConceptNet is able to consume additional priors in
the form of interaction labels. Also the prediction of each one
agent is conditioned on the information of all other agents
in the graph (through message passing). Such consideration
of surrounding vehicle behaviors is much in line with how
humans drive and therefore ConceptNet is able to generate
more human-like trajectories.

To study the continuous evolution of the ConceptNet
during execution, Figure 4 illustrates two traces at testing
time. To make the figures more legible, we keep only the pre-
dictions (red dotted trajectories) and the vehicle connections
(blue lines). Both traces focus on the more interesting case of
yielding. One noticeable behavior is that when ConceptNet
outputs the yield interaction for a vehicle, the predicted
trajectory for that vehicle is shortened signifying a slow down
motion. This is shown in Figure 4 (a) for vehicle 8fca2 at
times t = 1 and t = 3. At time t = 2, the network did
not output the yield interaction for 8fca2 which results in
a elongated trajectory. The same pattern is also shown in
Figure 4 (b) from t = 1 to t = 3 for the ego vehicle.
From Figure 4 (a) we can also observe that ConceptNet is
responsive to the change in possible interactions among its
agents. At t = 0 it is not clear between ego and 8fca2 which
vehicle will be yielding so it predicted both vehicles to yield
each other (the more conservative and safer prediction). As
time rolls out, it becomes clear that 8fca2 is yielding to ego
and our model is able to correctly capture this interaction
through time. A caveat occurs in Figure 4 (a) t = 1 where
ConceptNet predicts that ego is yielding to 8fca2 but the
generated trajectory does not reflect this. In contrast, the
predicted trajectory for 8fca2 under the same interaction
nearly stops in front of the intersection. This is a case
where the trajectory prediction is accurate but the interaction
prediction is not.

It is expected that incorporating the right priors can
improve the sample efficiency of prediction models. To
investigate, we trained our model along with comparison
models at different fractions of the training dataset (25%,
50%, 75%, 100%). Validation set remains the same. The
results are shown in Figure 5. To help with visualization,
the box plots are constructed from data up to the 90th
percentile of their individual distributions (major outliers are
discarded). From the figures we can see that ConceptNet is
able to out-perform comparison cases at all fractions of the
training set and is able to obtain descent accuracy at even
25% of training data (although with a larger spread).

In an abalation study, we compared different ways of
predicting the scene, the results are shown in Table II. We
first compare with no relations, we cut-off the message-
passing of both node-to-edge and edge-to-node. With no
relation information, the model achieved the worst ADE of
2.8m. We also trained the model with no interaction labels,
so the edge module can only learn automatically the neigh-
bour information without high-level semantics. Moreover,
we compare the model with node-to-node message passing,
without the explicit construction of the edges. We also com-
pare the model with yield-relation-only and follow-relation-
only, only one of the relation is used. We observe that
the proposed model achieved the most accurate prediction
trajectories (ADE 2.1m). Moreover, in terms of the semantic
accuracy the proposed model carries out highest interaction
score (73.4%).

In the results above, we have showed that by designing a
prediction model that is able to consume high-level semantic
labels, we can obtain a predictor with better prediction
accuracy and explainability. It is worth noting that, the
performance of the predictor depends on the quality of
the interaction labels. This is because part of ConceptNet’s
capability is to mimic the functionality of the interaction
label generator. At deployment time, it use this learned ability
to generate interactions labels and use them to affect the
behaviors of the predicted trajectories.

V. CONCLUSION

In this work, we propose the use of high-level interaction
labels as auxiliary guidance to training vehicle trajectory
predictors. We introduce the use of the ConceptNet as a
means to explicitly model interactions and consumes the
interaction labels during training. On a real-world driving
dataset, we show that incorporating the ConceptNet improves
the overall accuracy of the trajectory predictor with the
added benefit of enhanced explainability. For future work, we
will explore the incorporate vehicle-to-pedestrian interactions
as well as the integration of ConceptNet predictions with
differentiable planners.
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