
HYPER: Learned Hybrid Trajectory Prediction
via Factored Inference and Adaptive Sampling

Xin Huang1, Guy Rosman2, Igor Gilitschenski2, Ashkan Jasour1,
Stephen G. McGill2, John J. Leonard1,2, Brian C. Williams1

Abstract— Modeling multi-modal high-level intent is impor-
tant for ensuring diversity in trajectory prediction. Existing
approaches explore the discrete nature of human intent before
predicting continuous trajectories, to improve accuracy and
support explainability. However, these approaches often assume
the intent to remain fixed over the prediction horizon, which
is problematic in practice, especially over longer horizons. To
overcome this limitation, we introduce HYPER, a general and
expressive hybrid prediction framework that models evolving
human intent. By modeling traffic agents as a hybrid discrete-
continuous system, our approach is capable of predicting dis-
crete intent changes over time. We learn the probabilistic hybrid
model via a maximum likelihood estimation problem and lever-
age neural proposal distributions to sample adaptively from
the exponentially growing discrete space. The overall approach
affords a better trade-off between accuracy and coverage. We
train and validate our model on the Argoverse dataset, and
demonstrate its effectiveness through comprehensive ablation
studies and comparisons with state-of-the-art models.

I. INTRODUCTION
Predicting future trajectories of traffic agents is a key task

for autonomous vehicles. This task is challenging due to
multi-modal human intent. There is an inherent trade-off be-
tween accurately representing the distribution of trajectories
and covering the diversity of potential intents [1], [2], [3].

Several recent works address the trade-off explicitly using
a multi-stage approach [4], [5], [6], [7], [8]. First, they
model high-level human intent as a discrete state and infer
such intent to provide sufficient coverage over multi-modal
human intent. Next, trajectories are generated conditioned
on the intent. The models are trained to maximize the data
likelihood to support prediction accuracy. They demonstrate
great success in terms of prediction accuracy and coverage,
and provide explainability in predicted trajectories. However,
the existing approaches often use a simplified intent model
that assumes the intent is fixed over time, to keep the
prediction space reasonable. In practice, a traffic agent can
change its intent (i.e. follow the lane, perform a lane change,
and turn), especially over long horizons.

When accounting for the evolving discrete intent, the num-
ber of discrete modes grows exponentially in the prediction
horizon [9]. This is studied in the context of factored infer-
ence, e.g. by merging and pruning mode hypotheses [10],
[11] or sampling from the prediction space [12], [13]. In the
domain of trajectory prediction, the exponentially growing

1Computer Science and Artificial Intelligence Laboratory, MIT, Cam-
bridge, MA 01239, USA xhuang@csail.mit.edu

2Toyota Research Institute, Cambridge, MA 02139, USA. This article
solely reflects the opinions and conclusions of its authors and not TRI or
any other Toyota entity.

(a)

Trajectory S
am

pling

 S
am

ple S
election

(b)
Fig. 1: (a) Graphical model of a hybrid system representing
traffic agents, where z, x, c represent discrete mode vari-
ables, continuous state variables, and context variables, re-
spectively. Arrows indicate variable dependencies over time.
(b) Overview of HYPER: Given a learned hybrid model,
it leverages the learned proposal distribution to generate
hybrid sequence samples (red arrows) from an exponentially
growing space, which capture intent changes (red dots) over
time and support coverage, and further chooses a small set
of diverse trajectories using a sample selection algorithm.

discrete space can be mitigated by expanding the discrete
predictions at a few selected points [14] or accounting for
the most probable intent [15]; however, they may not provide
sufficient accuracy and coverage in a multi-modal problem.

We propose an approach that better captures both ac-
curacy and coverage by explicitly modeling discrete in-
tent sequences. Our approach, HYbrid trajectory PrEdic-
toR (HYPER), uses a learned probabilistic hybrid automata
model, as illustrated in Fig. 1(a), to jointly infer a sequence
of high-level discrete modes when generating low-level tra-
jectory predictions. We use neural proposal distributions [16]
in the hybrid model and the farthest point sampling algorithm
to obtain good coverage of trajectories with only a few
samples, while preserving model accuracy. Our contributions
are as follows: i) We formulate trajectory prediction as a
general and expressive hybrid prediction problem allowing
an evolving discrete intent, and learn a probabilistic hy-
brid automaton model as a deep neural network. ii) We
leverage a learned proposal function to sample adaptively
from an exponentially growing discrete space in the hybrid
model to support both accuracy and coverage, and utilize
a sample selection technique to further improve prediction
performance given limited samples. iii) We train and validate
our model on a naturalistic driving dataset and perform
detailed experiments to test our hypothesis and demonstrate
the effectiveness of our approach.

II. RELATED WORK

Multi-Modal Trajectory Prediction Trajectory prediction
has been studied extensively in the past few years. To ac-
count for uncertainty and multi-modality in prediction space,

2022 IEEE International Conference on Robotics and Automation (ICRA)
May 23-27, 2022. Philadelphia, PA, USA

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 2906

generative adversarial networks (GAN) [17] and variational
autoencoders (VAE) [18], [19] are used to generate multiple
trajectory predictions by sampling a latent space. Several
works have attempted to improve coverage of the possible
outcomes [1], [3], [20], [21], yet there is an inherent trade-
off between accurately representing the trajectory distribu-
tion and covering a diverse set of intents [1], [2], [3]. To
account for this trade-off between accuracy and coverage
explicitly, hybrid models are proposed to classify discrete
intent and generate continuous trajectories conditioned on
the intent. The intent is defined by a variety of choices,
including driving maneuvers [4], [22], [23], goal locations
or waypoints [6], [8], [24], [25], and target lanes [7], [26],
[27], etc. In these hybrid approaches, the intent is assumed
to be fixed over time. In practice, however, the agent may
change its intent over time, especially over a long horizon,
or follow different intents to get to the same target location
or lane. When accounting for evolving discrete intent, [14]
leverages a support vector machine to infer discrete intent
over specific decision points, and [15] proposes a discrete
choice modeling approach to infer discrete anchors over
time. Such models either expand discrete predictions at a few
selected steps or predict the most-probable intent, to avoid
dealing with the exponentially growing discrete space. In this
work, we propose a general and expressive hybrid prediction
framework that accounts for evolving intent by inferring
a sequence of discrete modes over time, and predicting
trajectories consistent with the mode sequence.

Factored Inference The discrete prediction space suffers
from exponential growth as a function of the prediction
horizon. This problem has been addressed in the context
of factored inference, by approximating the intractable state
space through pruning and sampling techniques. For in-
stance, multiple model estimation algorithms estimate the
possible operational modes for a system, and filter states
from an exponential number of hypotheses, by merging and
pruning hypotheses [10], [11]. Furthermore, [13] models
the hybrid system through a hybrid Bayesian network, and
proposes a sampling-based approximation algorithm to track
hybrid states. In parallel, [28], [12], [29], [30] model hybrid
systems through a probabilistic hybrid automaton (PHA) [31]
or a switching linear dynamical systems (SLDS) [32], and
apply efficient pruning, search, and sampling methods to
maintain reasonable estimation performance. Existing fac-
tored inference methods often assume a linear system to
obtain closed-form or trackable solutions, and do not fully
utilize the relevant context information. In this work, we
model a hybrid system as deep neural networks, which excel
at modeling nonlinear agent dynamics and learning complex
environment contexts such as map information.

Trajectory Sampling Many trajectory prediction methods
[33], [17], [19] sample multiple predictions in parallel from
a learned distribution. Our approach utilizes a sequential
adaptive sampling technique to generate samples through
a learned proposal distribution, conditioned on previously
generated samples. This allows the model to provide more
coverage with limited samples. The learned adaptive proposal

function is inspired by a few ideas from sequential trajectory
prediction sampling [34], sequential Monte Carlo [35], [16],
[36], and adaptive sampling [37], [38], [39]. Compared
to existing sequential Monte Carlo methods, our proposal
function is used to sample per time step, as opposed to
sampling a full trajectory at once, to avoid a large proposal
state.

In many applications such as autonomous driving, only a
small set of prediction samples can be afforded, as evaluating
each sample for downstream tasks such as risk assessment is
expensive [40]. To select a limited number of candidates from
all predicted samples, [3], [21] leverage diverse sampling
techniques to choose semantically meaningful samples from
a latent space; [6] uses non-maximum suppression (NMS)
to prune trajectories that are close to each other to improve
coverage; [8] proposes task-specific sub-sampling techniques
towards optimizing the evaluation metrics. Similar to [6],
our approach selects samples directly over the predicted
trajectories, offering better interpretability.

III. PROBLEM FORMULATION

In this section, we introduce the hybrid system model used
for HYPER, followed by a formal problem statement.

A. Hybrid System Modeling

We model a traffic agent as a probabilistic hybrid automa-
ton (PHA) [31]. Compared to a hidden Markov model [41],
the transitions in PHA have an autonomous property [12], i.e.
the discrete mode evolution depends on the continuous state.
This property provides better model capacity in mimicking
the behavior of traffic agents. The PHA is a tuple H =
〈s,w,F ,T , s0,Z〉1, where s = x ∪ z denotes the hybrid
state variables – z denotes the discrete mode with a finite
domain Z , and x ∈ Rnx denotes continuous state variables;
w specifies the input/output variables, which consists of
context variables c, continuous observation variables ox, and
discrete observation variables oz; F : Z → F specifies
the continuous evolution of the automaton for each discrete
mode, in terms of a set of discrete-time difference equations
F over the variables x and c; T : Z → T specifies the
discrete evolution of the automaton for each discrete mode,
as a finite set of transition probabilities drawn from T ; s0
denotes the initial hybrid state. The dependencies of hybrid
state variables in a PHA are depicted as a graphical model
in Fig. 1(a), where we omit the observation variables for
simplicity. The state evolution is governed by the transition
function T and the dynamics function F , indicated by the
three arrows going to zt and to xt, respectively.

Similar to existing trajectory prediction approaches, we
assume that the discrete labels are observable at training time,
defined as maneuvers [4], [22], [23] or goal locations [6],
[8]. These labels can be obtained through auto-labelling or
unsupervised clustering over continuous trajectories. While
it is challenging to perfectly label driver intent, we show in
the experiments that our model is robust to imperfect labels,
and defer learning with hidden intent for future work.

1We use the lowercase bold symbols to denote both the set of variables
and the vector, and lowercase standard symbols for variable instantiations.

2907

DynamicsNet

MapNet

L
S

T
M

L
S

T
M

L
S

T
M

L
S

T
M

L
S

T
M

L
S

T
M

Encoder Decoder

LSTM
Unit

T
Q F

LSTM
Unit

Encoder Cell Decoder Cell

Fig. 2: Overview of HYPER. The encoder encodes the
context information, such as observed path cA and map
cM , and passes the combined encoded state ch through
an LSTM network to obtain the hidden state vector h0.
The decoder is another LSTM that generates a sequence of
hybrid states through a learned hybrid model, including a
transition function T , a dynamics function F , and a proposal
distribution Q for improving coverage performance. Thumb
and coin sign in the decoder cell indicates random sampling.

B. Hybrid Model Learning
Given a set of observed discrete-continuous future agent

states O = (Ox, Oz)
2 and context states C, we want to

learn a hybrid model parameterized by θ that maximizes the
following data log likelihood [28], as a maximum likelihood
estimation (MLE) problem:

LMLE(O,C) =
∑

o,c∈(O,C)

log p(o|c; θ) (1)

=
∑
o,c

H∑
t=1

log pF (otx|ot−1
x , otz , c; θ) + log pT (otz |ot−1

x , ot−1
z , c; θ),

where o = {(ox, oz)t}t=H
t=1 is an observed future hybrid

trajectory sequence with horizon H , pF is a Gaussian distri-
bution over continuous states, pT is a categorical distribution
over discrete modes. The prior for the observations is omitted
as we assume that the observation noise is negligible, which
is common in most trajectory prediction literature.

IV. APPROACH

In this section, we introduce our approach3 to learn a
PHA-based encoder-decoder deep neural network model, as
depicted in Fig. 2. The encoder embeds the context informa-
tion c into a hidden state vector h0, and the decoder samples
a sequence of hybrid states {s′t}Ht=1 up to a finite horizon
through a hybrid model, conditioned on h0. Given the learned
model, we use the decoder to sample multiple predictions and
apply farthest point sampling in the continuous trajectory
space to generate a small set of predictions with good
coverage, as visualized in Fig. 1(b).

A. Encoder
In the encoder, we first encode the context information c,

including the observed path of the target agent cA and the
observed map data cM , per time step in the past. All features

2While the continuous state can be directly observed from perception
systems, the discrete observation can be estimated from continuous obser-
vations, as discussed in Sec. III-A.

3Code at github.com/ToyotaResearchInstitute/tristan.

are normalized to an agent-centric frame with respect to the
last observed position of the target agent, as in [42]. The
observed path at each step is encoded through a multi-layer
perceptron (MLP). The map is a static feature that is encoded
through a model based on [42], which takes the map input as
lane centerlines within 80 meters of the last observed agent
position, and performs self-attention to pool the encoded
states from all centerlines. Next, we run the encoded context
state ch through an LSTM network, which is commonly used
in handling sequential data in trajectory prediction [34], [4],
[3], to get the hidden context state vector h0 at the most
recent observed step t = 0.

B. Decoder
In the decoder, we generate a sequence of hybrid states,

including discrete modes and continuous positions, using
another LSTM network. At each time step, the LSTM unit
takes as inputs the hidden state ht−1 and the hybrid state
sample s′t−1 from the previous step, and outputs a new
hidden state ht and an output state yt. The output LSTM state
yt is passed through a transition function T 4, modeled as an
MLP layer that produces a categorical distribution PT (zt)
over discrete modes at time t as logits.

Existing factored inference algorithms [13], [12] sample
from T to obtain discrete samples; however, naively sampling
from T may take a large number of samples to sufficiently
cover the prediction space. Therefore, we propose learning
an additional proposal function Q on the top of the tran-
sition function, to sample the discrete mode for the task
of achieving better prediction accuracy and coverage. The
proposal function takes input from i) the distribution from
the transition function T , ii) the output LSTM state yt,
and iii) the set of previously generated trajectory sequence
samples S ′(P), and outputs a categorical distribution over
the next discrete modes as logits. The last input allows us
to sample adaptively conditioned on previously generated
samples. Each previous full trajectory sample is encoded
through an MLP layer. The max pooling of all sample
encodings is passed through an MLP layer before being fed
into the proposal function. Compared to existing sequential
Monte Carlo methods [35], [16], [36], our proposal function
is used to sample per time step, as opposed to sampling a
full trajectory at once, to avoid a large proposal state.

Given the output of Q, we leverage a Gumbel-softmax
sampler to sample the next mode z′t, whose real probability
is obtained from T . The mode is concatenated with yt
and fed into a dynamics function F as an MLP layer that
outputs the distribution of the continuous state PF (xt). The
distribution is parameterized as a Gaussian distribution with
mean µxt

and unit variance, which is chosen arbitrarily for
stable training and is assumed in models such as [6]. We
then sample a continuous state x′t from the distribution. The
predicted hybrid sample s′t = (z′t, x

′
t) at time step t and the

4By definition, the transition function takes the previous state and the
context information directly as inputs, as in Fig. 1(a). We follow existing
sequential prediction models [43], [33], [17] to read its inputs through an
LSTM, and abuse T to represent the auxiliary transition function that takes
the LSTM output yt.

2908

hidden state ht are used to generate the sample in the next
step, until the prediction horizon is reached.

Transition Function vs. Proposal Function: Although
both T and Q output a categorical distribution over modes,
they serve different purposes. The transition function T
is part of the hybrid model defined in Sec. III-A, and
it is used to compute the real probability of a sample.
For instance, given an observation of a future hybrid state
sequence, we can compute its likelihood by plugging it into
the LSTM model (i.e. through T and F). The likelihood is
the summation of the discrete log-likelihood from PT and
continuous log-likelihood from PF , as in Eq. (1). It allows
us to faithfully optimize the hybrid model, by maximizing
the log-likelihood given the ground truth future observations,
as defined in Sec. III-B.

On the other hand, the proposal function Q determines
which samples to generate, in order to improve prediction
coverage in an exponentially growing space. It does not
represent the true sample weight, which is determined by
the transition function T . The weighted sample set allows
us to cover the prediction distribution efficiently with only
a few samples, which is advantageous to existing sampling-
based methods that require a large number of samples to
approximate the probability distribution. In Sec. V, we show
a use case of sample weights to quantify prediction accuracy
as negative log-likelihood.

C. Learned Proposal Distributions

To train the proposal function for accuracy and cov-
erage, we generate K trajectory sequences {s′(k) =
(z′(k), x′(k))}Kk=1 sequentially from the decoder, and com-
pute the min-of-K L2 loss LQ = mink∈K ||x′(k) − ox||22.

There exist a few other options to learn the proposal
function for coverage, such as maximizing entropy [44]. In
this paper, we focus on the task of improving the diversity
of the continuous trajectories when guaranteeing prediction
accuracy, and choose the min-of-K L2 loss (or variety
loss [17]) that is widely used in the multi-modal trajectory
prediction literature. While it is possible to train the model
with only the min-of-K L2 loss to favor towards prediction
coverage, as in [17], [3], it leads to a diluted probability
density function compared to the ground truth [2]. Therefore,
we choose to improve prediction coverage while ensuring
accuracy, by introducing the data likelihood loss in Eq. (1).
As a result, we can leverage the proposal distribution to
generate representative samples, while obtaining the real
probability of these samples from the transition function.
To encourage the proposal distribution to be close to the
transition distribution and the smoothness of the trajectory,
we add a regularization loss Lreg penalizing i) the L2
difference between the two distribution logits and ii) the L2
loss over the second derivative of the predicted trajectory.

D. Trajectory Sample Selection

In many autonomous vehicle applications, we can only
afford a small set of prediction samples, due to the non-
trivial computational complexity of evaluating these samples

for risk assessment [40]. To further improve coverage and
boost prediction performance with a limited budget on sam-
ples, we propose to use the farthest point sampling (FPS)
algorithm [45]. The algorithm selects trajectories that are
far away from each other from samples generated from the
proposal distribution, while maintaining their probabilities
through the learned hybrid model. The algorithm works by
selecting the next sample farthest away from the previously
selected samples, in terms of the distance between end
locations, with the first sample selected with the highest
likelihood. FPS is able to capture the majority of distinct
options thanks to its 2-optimal coverage property [45], as
we show in Sec. V-B.2 on how it captures diverse samples
with the proposal distribution.

E. Model Training and Inference

In training time, we train the entire model end-to-end,

L = −LMLE + αLQ + βLreg, (2)

where the MLE term (c.f. Eq. (1)) is negated as a loss to
minimize, and α and β are the loss coefficients.

At inference time, we i) sequentially call the hybrid model
M times with the proposal function to generate M hybrid
trajectory sequences, ii) compute their likelihoods based
on the probabilities from the transition function and the
dynamics function, and iii) perform FPS to select the final N
trajectory samples, and normalize the probabilities of each
sample so that they sum up to 1.

V. EXPERIMENTAL RESULTS

In this section, we introduce the dataset and the model
details, followed by a series of experiments demonstrating
the effectiveness of our approach compared to baselines.

A. Dataset and Model Details

We train and validate HYPER on Argoverse v1.1 [46], a
widely used benchmark for single agent trajectory prediction.
The data contains 324,557 segments of agent trajectories,
including two seconds of observed trajectories and three
seconds of trajectories to predict, sampled at 10Hz, as well
as map information such as lane centerlines.

We augment the dataset offline with discrete mode labels
over time, defined as stop, fast forward, slow
forward, left turn, right turn, depending on
the velocity and angular changes differentiated from the
trajectories. Despite having a short prediction horizon, almost
40% of Argoverse data exhibits evolving intents with more
than one label in three seconds, as we demonstrate in the
experiments.

In the encoder, DynamicsNet is an MLP with 32 neurons;
MapNet utilizes a similar structure as VectorNet [42]; the
encoder LSTM has one layer with a hidden size of 32 and
an output dimension of 32. In the decoder, the transition
function and the proposal function use a two-layer MLP with
(32, 5) neurons followed by a softmax layer; the dynamics
function is a two-layer MLP with (32, 2) neurons; the
sampler is a Gumbel-Softmax sampler [47] that produces

2909

1 Second 3 Seconds
Discrete Function minADE minFDE minADE minFDE
Transition 0.45 0.62 1.19 2.43
Proposal (non-Adapt.) 0.44 0.48 1.00 1.92
Proposal (Adaptive) 0.33 0.44 0.86 1.68

TABLE I: Min-of-6 errors using different discrete function
choices. Our proposed adaptive proposal function achieves
the lowest errors.
differentiable samples; the decoder LSTM has the same
structure as the encoder LSTM. All MLPs are followed by
ReLU and dropout layers with a rate of 0.1.

The loss coefficients α and β in Eq. (2) are 1. The sizes of
samples K,M,N are 6, 50, and 6, respectively. The model is
optimized using Adam [48] and trained on a single NVIDIA
Tesla V100 GPU, with a batch size of 16 and a learning rate
of 1e-3. It has 164K parameters and takes approximately
17 milliseconds to generate 50 predicted trajectories and
2 milliseconds to select 6 samples using FPS, making our
model suitable in real-time systems.

We adopt the metrics used by the Argoverse benchmark
to evaluate the prediction performance, including minimum
average displacement error (minADE), minimum final dis-
placement error (minFDE), a variant of minFDE that adds a
probability penalization term (brier-minFDE), and miss rate
(MR). All statistics are collected in the Argoverse validation
dataset. For sampling-based methods (i.e. Gumbel-softmax),
we run them five times and take the average. We annotate
the method used in our model with italics font in the tables.

B. Ablation Study

1) Learned Adaptive Proposal Distribution: We demon-
strate the contribution of the learned proposal distribution
by comparing different options of discrete intent proposal
functions, including i) the learned transition function T (i.e.
setting α and β to 0), ii) the non-adaptive proposal function
that with no access to the other samples, and iii) our proposed
proposal function Q that samples adaptively by considering
previously generated samples. The results are summarized
in Table. I, in which we obtain 6 samples without further
sample selection, and compute the errors of the best sample.
We observe that the proposal functions, learned to optimize
the minimum errors, result in better metrics compared to the
discrete function, especially through adaptive sampling.

2) Trajectory Sample Selection: We validate the effective-
ness of our sample selection method, FPS, by comparing it
with a few standard options, including i) a random sampler
picking samples based on their weights, ii) a most-likely
sampler that selects the top likely samples, similar to select-
ing the most-probable intent in [15] and best-k enumeration
in [29], iii) a sampler based on non-maximum suppression
(NMS), as used in [6], which selects samples greedily by
finding the next sample that is distant enough from existing
samples given a threshold. For a fair comparison, the distance
measure in NMS is the same as FPS based on final locations,
and we empirically choose 2 different distance thresholds
(2 meters and 4 meters) to select the next sample. If the
number of valid NMS samples is smaller than N , we select

the remaining samples randomly.
In the study, we first generate M ∈ {6, 30, 50} samples

using the proposal distribution, and select N = 6 samples.
The results are summarized in Table II. When M = N = 6,
no subsampling occurs. When M > N , a random sampler
and a most-likely sampler do not improve the errors, as
selecting only the most likely samples leads to worse errors,
since trajectory prediction is a multi-modal problem. As M
grows, the most-likely sampler acts similar to a maximum
likelihood estimator, and exhibits inferior results as the
problem is multi-modal. NMS improves results but is limited
by a fixed distance threshold: when the threshold is small (i.e.
2 meters), it fails to provide enough coverage in cases where
the predicted samples are very far away; when the threshold
is large (i.e. 4 meters), the number of valid samples can be
smaller than N . On the other hand, FPS reduces the errors
the most, by finding the 6 samples that provide both accuracy
and coverage. When M is larger than 50, the error reduction
is small for both NMS and FPS.

C. Quantitative Results

We compare our full model with a number of represen-
tative baselines, including i) DESIRE [18] that utilizes a
conditional VAE model to generate trajectory prediction sam-
ples from a latent space; ii) DiversityGAN [3] that predicts
diverse samples by learning a latent space in a GAN model
such that the prediction samples with different semantic
meanings are far away in that latent space. This baseline
is similar to other diverse sampling works that improve cov-
erage through a learned latent space [21]; iii) MultiPath [49]
that learns the trajectory modalities as a set of anchors
and predicts trajectories through anchor classification and
offset regression; iv) TNT [6] that first infers discrete target
locations and second predicts target-conditioned trajectories
to support multi-modality. In addition, we introduce a few
variants of our models to validate our hypothesis, including
v) SingleMode that assumes a single mode and only samples
from the continuous distribution; vi) HYPER-Linear that
uses only linear layers in the decoder to simulate a linear
dynamic system as in existing factored inference literature
that assumes linear dynamics; vii) HYPER-NoMap that
does not use the map as the input feature; viii) HYPER-
Coverage that is trained with only the task-specific coverage
loss. It shares the same spirit as [15] that optimizes for
prediction coverage; ix) HYPER-Perturb that is trained on
the same dataset, in which we randomly perturb 5% of
discrete labels with a different mode chosen uniformly.

We use the metrics reported in [6], and present the
comparison in Table III. HYPER outperforms all baselines
that assume a fixed intent over time by using a fixed high-
level intent state in the trajectory decoder (i-iv), ignore the
discrete structure in the model (v), presume linear dynamics
(vi), or ignore the map features (vii). In order to demon-
strate its robustness with noisy discrete labels, we randomly
perturbed 5% of discrete labels and observe that our model
trained on the perturbed data achieves similar results (ix).
We further improve the minADE metric with a variant,

2910

6 / 6 samples 6 / 30 samples 6 / 50 samples
Selection Method minADE minFDE minADE minFDE minADE minFDE
Proposal + Random 0.86 1.68 1.02 2.27 0.98 2.12
Proposal + Most-likely 0.86 1.68 1.10 2.45 1.13 2.51
Proposal + NMS (2m) 0.86 1.68 0.76 1.38 0.73 1.30
Proposal + NMS (4m) 0.86 1.68 0.80 1.57 0.78 1.49
Proposal + FPS 0.86 1.68 0.74 1.30 0.72 1.26

Table II: Accuracy over
3s for various sample
selection methods. FPS
achieves the best per-
formance by selecting 6
samples from the pro-
posal distributions.

Model NLL minADE minFDE MR
DESIRE [18] - 0.92 1.77 0.18
DiversityGAN [3] - 1.13 2.20 0.17
MultiPath [49] - 0.80 1.68 0.14
TNT [6] - 0.73 1.29 0.09
SingleMode 78.46 0.87 2.00 0.22
HYPER-Linear 45.86 0.79 1.38 0.12
HYPER-NoMap 40.55 0.77 1.35 0.11
HYPER-Coverage 34.54 0.66 1.27 0.08
HYPER-Perturb 31.02 0.71 1.27 0.09
HYPER 30.87 0.72 1.26 0.09

TABLE III: Prediction performance over 3 seconds compared
to baseline models. Our model balances between accuracy
and coverage, with a variant (HYPER-Coverage) trained on
the coverage task achieving the lowest minADE and MR.

1 Second / 3 Seconds (5 samples)
Model minADE minFDE br-minFDE minDER(%)
M-LSTM[4] 0.41/1.06 0.52/1.94 1.23/2.65 5.70/11.01
HYPER 0.32/0.80 0.40/1.47 1.05/2.12 5.18/7.65

TABLE IV: Compared to ManeuverLSTM, HYPER achieves
better results in both discrete and continuous error metrics.

HYPER-Coverage, that is solely trained towards optimizing
this metric, but sacrifices accuracy measured by the negative
log-likelihood metric (NLL) [50]. Our method, on the other
hand, balances between accuracy and coverage.

The work that is closest to ours in spirit is ManeuverL-
STM (M-LSTM) [4]. It models driving modes explicitly
as maneuvers labeled from trajectory data, and assumes
the maneuver is fixed over time. For a fair comparison,
we use the same model, training process, and definition
of maneuvers as used in our model, except forcing each
sample to have a fixed mode over the prediction horizons for
ManeuverLSTM. We use five samples for a fair comparison
given the number of maneuvers defined for ManeuverLSTM.
In addition to the standard metrics, we introduce min-of-K
discrete error rate (minDER) that measures the percentage
of wrong predictions in discrete states for the best predicted
sample, to quantify the discrete prediction accuracy and
coverage. Table IV demonstrates that our model outperforms
this baseline by a large margin, in both continuous and
discrete metrics, by supporting evolving maneuver intent and
utilizing a proposal function to explore the intent space.

D. Qualitative Results

In Fig. 3, we present a qualitative example to demonstrate
the effectiveness of FPS. Fig. 3(a) shows the most likely ex-
amples selected based on the predicted likelihood, which fail
to provide sufficient coverage. On the other hand, NMS (b)
selects more diverse samples, but suffers from a fixed distant

(a) (b) (c)
Fig. 3: Sample selection using different methods: (a) most-
likely (purple), (b) NMS (2m) (green), (c) FPS (red). Ground
truth past and future trajectory are in blue and cyan. Predicted
samples in grey. FPS achieves the best coverage.

Fig. 4: Comparison between HYPER (red) and Maneu-
verLSTM (olive) predictions in a lange change scenario,
where ground truth future trajectories are in cyan, and red
dots depict where the mode changes in HYPER predictions.
HYPER identifies multiple time slots, highlighted in black
circles, to change the intent.

threshold. As a more robust and threshold-free alternative,
FPS (c) finds diverse options more effectively.

In Fig. 4, we show a representative example that demon-
strates the advantage of supporting evolving driving modes.
In this lane change scenario, the ground truth future trajec-
tory follows the lane for a few seconds and then performs a
lane change. Our model (predictions in red) infers the mode
change successfully and predicts a few options on when to
change, as highlighted by the red dots circled in black. On
the other hand, ManeuverLSTM (predictions in olive) only
predicts a single option for each maneuver, ignoring the fact
that modes may change in the future sequence. This leads to
worse accuracy and coverage.

VI. CONCLUSION

In conclusion, we present a general and expressive hybrid
prediction model that accounts for evolving discrete modes
in the future trajectory. The model leverages learned proposal
functions and the farthest point sampling algorithm to select
a small number of accurate and diverse samples from an
exponential space. The effectiveness of our model is vali-
dated in the Argoverse dataset, through both quantitative and
qualitative experiments.

2911

REFERENCES

[1] O. Makansi, E. Ilg, O. Cicek, and T. Brox, “Overcoming limitations
of mixture density networks: A sampling and fitting framework for
multimodal future prediction,” in CVPR, 2019, pp. 7144–7153.

[2] L. A. Thiede and P. P. Brahma, “Analyzing the Variety Loss in the
Context of Probabilistic Trajectory Prediction,” in ICCV, 2019.

[3] X. Huang, S. G. McGill, J. A. DeCastro, L. Fletcher, J. J. Leonard,
B. C. Williams, and G. Rosman, “DiversityGAN: Diversity-aware ve-
hicle motion prediction via latent semantic sampling,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 5089–5096, 2020.

[4] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of
surrounding vehicles with maneuver based LSTMs,” in IVS, 2018,
pp. 1179–1184.

[5] J. Guan, Y. Yuan, K. M. Kitani, and N. Rhinehart, “Generative hybrid
representations for activity forecasting with no-regret learning,” in
CVPR, 2020, pp. 173–182.

[6] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen,
Y. Shen, Y. Chai, C. Schmid et al., “TNT: Target-driven trajectory
prediction,” in CoRL, 2020.

[7] L. Zhang, P.-H. Su, J. Hoang, G. C. Haynes, and M. Marchetti-Bowick,
“Map-adaptive goal-based trajectory prediction,” in CoRL, 2020.

[8] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“HOME: Heatmap output for future motion estimation,” arXiv preprint
arXiv:2105.10968, 2021.

[9] M. W. Hofbaur and B. C. Williams, “Hybrid estimation of complex
systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 34, no. 5, pp. 2178–2191, 2004.

[10] H. A. Blom and Y. Bar-Shalom, “The interacting multiple model al-
gorithm for systems with Markovian switching coefficients,” TACON,
vol. 33, no. 8, pp. 780–783, 1988.

[11] P. Andersson, “Adaptive forgetting in recursive identification through
multiple models,” International Journal of Control, vol. 42, no. 5, pp.
1175–1193, 1985.

[12] L. Blackmore, S. Funiak, and B. C. Williams, “A combined stochastic
and greedy hybrid estimation capability for concurrent hybrid models
with autonomous mode transitions,” Robotics and Autonomous Sys-
tems, vol. 56, no. 2, pp. 105–129, 2008.

[13] D. Koller, U. Lerner, and D. Anguelov, “A general algorithm for
approximate inference and its application to hybrid Bayes nets,” in
UAI, 1999.

[14] S. K. Jayaraman, L. P. Robert, X. J. Yang, and D. M. Tilbury,
“Multimodal hybrid pedestrian: A hybrid automaton model of urban
pedestrian behavior for automated driving applications,” IEEE Access,
vol. 9, pp. 27 708–27 722, 2021.

[15] P. Kothari, B. Sifringer, and A. Alahi, “Interpretable social anchors
for human trajectory forecasting in crowds,” in CVPR, 2021.

[16] S. Gu, Z. Ghahramani, and R. E. Turner, “Neural adaptive sequential
Monte Carlo,” in NeurIPS, 2015, pp. 2629–2637.

[17] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
GAN: Socially acceptable trajectories with generative adversarial
networks,” in CVPR, 2018, pp. 2255–2264.

[18] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chan-
draker, “DESIRE: Distant future prediction in dynamic scenes with
interacting agents,” in CVPR, 2017, pp. 336–345.

[19] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajec-
tron++: Multi-agent generative trajectory forecasting with heteroge-
neous data for control,” ECCV, 2020.

[20] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M.
Wolff, “Covernet: Multimodal behavior prediction using trajectory
sets,” in CVPR, 2020, pp. 14 074–14 083.

[21] Y. Yuan and K. M. Kitani, “Diverse trajectory forecasting with
determinantal point processes,” in ICLR, 2020.

[22] D. Richardos, B. Anastasia, D. Georgios, and A. Angelos, “Vehicle
maneuver-based long-term trajectory prediction at intersection cross-
ings,” in CAVS. IEEE, 2020, pp. 1–6.

[23] M. Hasan, E. Paschalidis, A. Solernou, H. Wang, G. Markkula,
and R. Romano, “Maneuver-based anchor trajectory hypotheses at
roundabouts,” arXiv preprint arXiv:2104.11180, 2021.

[24] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik,
and A. Gaidon, “It is not the journey but the destination: Endpoint
conditioned trajectory prediction,” in ECCV. Springer, 2020, pp.
759–776.

[25] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou, “Multimodal motion
prediction with stacked transformers,” in CVPR, 2021.

[26] B. Kim, S. H. Park, S. Lee, E. Khoshimjonov, D. Kum, J. Kim, J. S.
Kim, and J. W. Choi, “LaPred: Lane-aware prediction of multi-modal
future trajectories of dynamic agents,” in CVPR, 2021.

[27] H. Song, D. Luan, W. Ding, M. Y. Wang, and Q. Chen, “Learning to
predict vehicle trajectories with model-based planning,” arXiv preprint
arXiv:2103.04027, 2021.

[28] L. Blackmore, S. Gil, S. Chung, and B. Williams, “Model learning for
switching linear systems with autonomous mode transitions,” in CDC.
IEEE, 2007, pp. 4648–4655.

[29] E. M. Timmons and B. C. Williams, “Best-first enumeration based on
bounding conflicts, and its application to large-scale hybrid estima-
tion,” JAIR, vol. 67, pp. 1–34, 2020.

[30] P. Becker-Ehmck, J. Peters, and P. Van Der Smagt, “Switching linear
dynamics for variational bayes filtering,” in ICML. PMLR, 2019, pp.
553–562.

[31] M. W. Hofbaur and B. C. Williams, “Mode estimation of probabilis-
tic hybrid systems,” in International Workshop on Hybrid Systems:
Computation and Control. Springer, 2002, pp. 253–266.

[32] S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and
L. Paninski, “Bayesian learning and inference in recurrent switching
linear dynamical systems,” in Artificial Intelligence and Statistics.
PMLR, 2017, pp. 914–922.

[33] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in CVPR, 2016, pp. 961–971.

[34] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via LSTM
encoder-decoder architecture,” in 2018 IEEE Intelligent Vehicles Sym-
posium (IV). IEEE, 2018, pp. 1672–1678.

[35] P. Del Moral, A. Doucet, and A. Jasra, “An adaptive sequential Monte
Carlo method for approximate Bayesian computation,” Statistics and
computing, vol. 22, no. 5, pp. 1009–1020, 2012.

[36] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei, “Variational
sequential monte carlo,” in AISTATS. PMLR, 2018, pp. 968–977.

[37] Y. Xu, J. Choi, S. Dass, and T. Maiti, “Sequential bayesian predic-
tion and adaptive sampling algorithms for mobile sensor networks,”
TACON, vol. 57, no. 8, pp. 2078–2084, 2011.

[38] R. Bardenet, A. Doucet, and C. Holmes, “Towards scaling up Markov
chain Monte Carlo: an adaptive subsampling approach,” in ICML.
PMLR, 2014, pp. 405–413.

[39] N.-C. Xiao, M. J. Zuo, and C. Zhou, “A new adaptive sequential
sampling method to construct surrogate models for efficient reliability
analysis,” Reliability Engineering & System Safety, vol. 169, pp. 330–
338, 2018.

[40] A. Wang, X. Huang, A. Jasour, and B. Williams, “Fast risk assessment
for autonomous vehicles using learned models of agent futures,” in
RSS, 2020.

[41] R. Krishnan, U. Shalit, and D. Sontag, “Structured inference networks
for nonlinear state space models,” in AAAI, vol. 31, no. 1, 2017.

[42] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
“VectorNet: Encoding HD maps and agent dynamics from vectorized
representation,” in CVPR, 2020, pp. 11 525–11 533.

[43] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[44] R. Zhao, X. Sun, and V. Tresp, “Maximum entropy-regularized multi-
goal reinforcement learning,” in ICML. PMLR, 2019, pp. 7553–7562.

[45] T. F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,” Theoretical computer science, vol. 38, pp. 293–306, 1985.

[46] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3D
tracking and forecasting with rich maps,” in CVPR, 2019, pp. 8748–
8757.

[47] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
Gumbel-Softmax,” arXiv preprint arXiv:1611.01144, 2016.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015.

[49] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior prediction,” in
CoRL, 2019.

[50] B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-agent
trajectory modeling with dynamic spatiotemporal graphs,” in ICCV,
2019, pp. 2375–2384.

2912

