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Abstract
Experience replay plays a crucial role in improving the sample efficiency of deep reinforcement
learning agents. Recent advances in experience replay propose using Mixup (Zhang et al., 2018) to
further improve sample efficiency via synthetic sample generation. We build upon this technique
with Neighborhood Mixup Experience Replay (NMER), a geometrically-grounded replay buffer
that interpolates transitions with their closest neighbors in state-action space. NMER preserves a
locally linear approximation of the transition manifold by only applying Mixup between transitions
with vicinal state-action features. Under NMER, a given transition’s set of state-action neighbors is
dynamic and episode agnostic, in turn encouraging greater policy generalizability via inter-episode
interpolation. We combine our approach with recent off-policy deep reinforcement learning algo-
rithms and evaluate on continuous control environments. We observe that NMER improves sample
efficiency by an average 94% (TD3) and 29% (SAC) over baseline replay buffers, enabling agents
to effectively recombine previous experiences and learn from limited data.

1. Introduction

Learning robust and effective behavior from a limited set of examples is a hallmark of human
cognition (Fong et al., 2018). The sample efficiency of our neuronal circuits allows us to quickly
learn new skills even with limited experience. In many problem domains, human sample efficiency
far outperforms that of deep reinforcement learning algorithms (Lee et al., 2019). Narrowing this
gap is a critical milestone toward replicating intelligence in reinforcement learning agents.

Model-free (MF), off-policy deep reinforcement learning (DRL) agents provide significant sam-
ple efficiency gains relative to their on-policy counterparts (Gu et al., 2017; Arulkumaran et al.,
2017). Improved sample efficiency is due largely to experience replay techniques (Mnih et al.,
2013), which enable agents to learn from past experience. The trial-and-error nature of reinforce-
ment learning nonetheless necessitates collecting large volumes of training data (Yang et al., 2020;
Yu, 2018; Mankowitz et al., 2019). While lower sample efficiency may be acceptable for learning
in simulation, it may significantly hinder an agent’s progress in many real-world applications where
samples are expensive to generate (Yang et al., 2020).
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Model-based (MB) DRL agents achieve improved sample efficiency by learning a model of
the environment (Weyand et al., 2016; Ha and Schmidhuber, 2018; Hafner et al., 2020) that can
be used for offline planning and policy refinement (Browne et al., 2012; Schwarting et al., 2021;
Seyde et al., 2020, 2022). For reinforcement learning tasks with noisy and high-dimensional state
and action spaces, however, an agent’s learned environment models may suffer from estimation bias
when little data is available. Combined with model capacity limitations, this can result in model-
based agents converging to suboptimal policies (Mankowitz et al., 2019; Renaudo et al., 2015).

We aim to combine the benefits of learning on true environment interactions in MF-DRL with
the sample efficiency benefits of MB-DRL. To this end, we propose Neighborhood Mixup Expe-
rience Replay (NMER), a modular replay buffer that improves the sample efficiency of off-policy,
MF-DRL agents by training on experiences sampled from convex, linear combinations of vicinal
transitions from the replay buffer. NMER interpolates neighboring pairs of transitions in the geo-
metric transition space of the replay buffer using Mixup (Zhang et al., 2018), a convex and stochastic
linear interpolation technique. Despite the computational and analytical simplicity of Mixup, its use
in experience replay can improve generalization and policy convergence through implicit regular-
ization and expansion of the training support of the agent’s neural network function approximators.
We empirically observe these benefits of Mixup in our continuous control experiments.

NMER can be applied to any continuous control reinforcement learning agent leveraging ex-
perience replay. As a motivating example, consider a robotic humanoid learning to walk using
off-policy, MF-DRL agents, given a limited set of experiences consisting of odometry and actuator
sensor measurements. With standard experience replay (Mnih et al., 2013) approaches, the finite
size of the agent’s experiences can hinder the agent from learning robust policies, perhaps due to the
agent not experiencing a crucial subset of the transition space. With NMER, however, interpolated
experiences can provide this DRL agent with crucial training samples in regions of the transition
space they previously did not experience, thus improving the robustness and performance of the
policies the agent learns. Our contributions1 are thus summarized as follows:

1. Neighborhood Mixup Experience Replay (NMER): A geometrically-grounded replay buffer
that improves the sample efficiency of off-policy, MF-DRL agents by training these agents on
linear combinations of vicinal transitions.

2. Local Mixup: A generalization of NMER, this algorithm considers the application of Mixup
between vicinal points in any feature space, with proximity defined by a distance metric.

3. Improved sample efficiency in continuous control: Our evaluation study demonstrates that
NMER substantially improves sample efficiency of off-policy, MF-DRL algorithms across
several continuous control environments.

2. Related work

Experience replay, data augmentation, and interpolation approaches have been applied to RL and
other machine learning domains. NMER builds off of these techniques to improve sample efficiency.

Experience replay Prioritized Experience Replay (PER) (Schaul et al., 2016) samples an agent’s
experiences from a replay buffer according to the “learnability” or “surprise” that each sample in-
duces in the agent in its current parameterization. PER uses absolute TD-error of a sample (Schaul

1. Code for NMER can be found at this GitHub repository.
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et al., 2016) as a heuristic measure of “surprise”. In the stochastic prioritization variant of PER,
transitions are sampled proportionally to their learnability. While this technique improves the sam-
ple efficiency by selecting highly-relevant samples, it does not improve the overall “learnability” of
the samples themselves and restricts training to previously observed experience. Experience Replay
Optimization (ERO) (Zha et al., 2019) parameterizes the replay buffer directly as a learned priority
score function. Rather than using heuristics such as TD-error to determine a prioritization of sam-
ples, as is performed in PER (Schaul et al., 2016), in ERO this prioritization is learned directly via a
policy gradient approach in which return is measured by the agent’s policy improvement (Zha et al.,
2019). A REINFORCE-based (Williams, 1992) estimate of the policy gradient updates the learned
replay buffer in an alternating fashion with the policy being trained. Similarly to PER, while ERO
improves sample efficiency by selecting samples with high “learnability”, it does not improve the
overall “learnability” of the samples themselves, and also restricts training to the agent’s observed
experiences. Interpolated Rewards Replay (von Pilchau et al., 2020) performs linear interpolation
of experienced rewards. In contrast, NMER interpolates entire transitions using stochastic convex
linear interpolation, resulting in a more expressive interpolation of an agent’s experiences.

Data augmentation Data augmentation techniques are also used to improve the performance of
DRL agents. Reinforcement learning with Augmented Data (RAD) is a module designed for improv-
ing agent performance in visual and propioceptive DRL tasks (Laskin et al., 2020). For continuous
control environments, RAD leverages techniques such as random amplitude scaling (RAS). While
RAS does allow for learning beyond an agent’s observed set of experiences, it does not consider
meaningful combinations of these experiences. In Data-regularized Q (DrQ) learning, geometric-
invariant data augmentation mechanisms are applied to off-policy DRL algorithms to improve sam-
ple efficiency in visual control tasks, providing off-policy agents with sample efficiency comparable
to state-of-the-art MB-DRL algorithms (Kostrikov et al., 2020). Similar to DrQ, NMER improves
sample efficiency via regularization through training agents on augmented samples.

Mixup sampling Mixup was originally applied to supervised machine learning domains, and em-
pirically improves the generalizability and out-of-sample predictive performance of learners (Zhang
et al., 2018). Several reinforcement learning methodologies make use of Mixup-interpolated expe-
riences for training reinforcement learning agents. In Continuous Transition (Lin et al., 2020),
temporally-adjacent transitions are interpolated with Mixup, generating synthetic transitions be-
tween pairs of consecutive transitions. In MixReg (Wang et al., 2020), generated transitions are
formed using Mixup on combinations of input and output signals. In S4RL (Sinha et al., 2021),
generated transitions are produced by interpolating current (st) and next (st+1) states within an ob-
served transition. While these approaches increase the training domain via interpolation, they do
not strictly enforce geometric transition proximity of the resulting samples. Proximity between the
points used for sampling is encoded temporally, as in (Lin et al., 2020; Sinha et al., 2021), but not in
the geometric transition space of the agent’s experience. NMER employs a nearest neighbor heuris-
tic to encourage transition pairs for Mixup to be located approximately within the same dynamics
regimes in the transition manifold. Compared to Continuous Transition (Lin et al., 2020) and S4RL
(Sinha et al., 2021), samples interpolated with NMER may better preserve the local dynamics of the
environment and enable further agent regularization through inter-episode interpolation between
transitions and their dynamic sets of nearest neighbors.
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3. Preliminaries

Neighborhood Mixup Experience Replay (NMER) builds on experience replay for off-policy DRL,
Mixup, and nearest neighbor heuristics to encourage approximately on-manifold interpolation.

Off-policy DRL for continuous control tasks Off-policy DRL has successfully been applied to
continuous control tasks through the use of actor-critic methods such as Soft Actor-Critic (SAC),
Deep Deterministic Policy Gradients (DDPG), and Twin Delayed DDPG (TD3) (Haarnoja et al.,
2018; Lillicrap et al., 2016; Fujimoto et al., 2018). In this off-policy, MF-DRL setting, agents are
trained using transitions composed of states, actions, rewards, and next states. The state (S), action
(A), and reward (R) spaces that define these transitions are continuous.

Experience replay. Experience replay (Mnih et al., 2013) enables an agent to train on past obser-
vations. It can be largely decoupled from the agent’s training algorithm - while the agent seeks to
learn optimal policies and value functions given observed training samples, regardless of the sam-
ples provided to it, the experience replay buffer is tasked with providing the agent samples that offer
the greatest “learnability” for improving these policies and value functions. Current experience
replay approaches are discussed in Section 2.

Mixup. Mixup (Zhang et al., 2018) is a novel stochastic data augmentation technique that im-
proves the generalizability of supervised learners by training them on convex linear combinations
of existing samples. This linear interpolation mechanism invokes a prior on the learner that lin-
ear combinations of features result in the same linear combinations of targets (Zhang et al., 2018),
leading to generalizability in accordance with Occam’s Razor (Rasmussen and Ghahramani, 2001).
Through another lens, Mixup increases the generalizability of a learner by increasing its training
support with interpolated transitions. These transitions are sampled from the convex unit line con-
necting two transitions (Zhang et al., 2018) according to a symmetric beta distribution parameterized
by α, which controls the spread of the distribution along this relative unit line. To interpolate a new
sample xinterpolated using two existing samples x1,x2 ∈ Rd, Mixup interpolates according to:

xinterpolated = λx1 + (1− λ)x2, λ ∼ β(α, α), α > 0 (1)

On-manifold interpolation. To measure the accuracy of interpolation in interpolated experience
replay approaches, we consider how “on-manifold” the interpolated transition is with respect to the
transition manifold mapping states and actions to rewards and next states. We consider that the
observed transitions of a replay buffer lie on a transition manifold, which we denote by the space
T . The space T is given by the Cartesian product of the state (S), action (A), reward (R), and next
state (S) spaces of the agent as: T : S ×A×R×S . With NMER, the use of Mixup between only
proximal/neighboring transitions acts as a heuristic to encourage interpolated transitions to remain
near the underlying transition manifold, as depicted by Figure 1. See our technical report for details
on on-manifold assessment.

4. Neighborhood Mixup Experience Replay (NMER)

NMER trains off-policy MF-DRL agents using convex linear combinations of an agent’s existing,
proximal experiences, effectively creating locally linear models centered around each transition of
the replay buffer. By only interpolating proximal transitions with one another, where proximity
is measured by the standardized Euclidean distance in the state-action space of the replay buffer,
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Figure 1: Examples of on and off-transition manifold interpolation using Mixup. On-manifold or approxi-
mately on-manifold interpolation is crucial for successfully training DRL agents in continuous control tasks.

NMER interpolates transitions that have similar state and action inputs, but potentially different
reward and next state outputs. In considering these nearest neighbors, NMER regularizes the off-
policy MF-DRL agents it trains by allowing inter-episode interpolation between proximal transi-
tions. Furthermore, in the presence of stochasticity in the transition manifold, NMER can prevent
these agents from overfitting to a particular (reward, next state) outcome by interpolating different
(reward, next state) outcomes for near-identical (state, action) inputs. NMER consists of two steps:

1. Update step: When a new environment interaction is added to the replay buffer, re-standardize
the states and actions of the stored transitions in the replay buffer, and update the nearest
neighbor data structures using Euclidean distances over the Z-score standardized, concate-
nated state-action features of the replay buffer. Similarity search is thus measured over the
input state and action spaces; however, we emphasize that NMER can admit other distance
functions and representations of similarity as well. See our technical report for further details.

2. Sampling Step: First, we sample a batch of “sample transitions” uniformly from the replay
buffer. Next, we query the nearest neighbors of each transition in this sampled batch. Fol-
lowing this, for each set of neighbors in the training batch, we sample a neighbor transition
uniformly from this set of neighbors, and apply Mixup to linearly interpolate each pair of
selected samples and neighbors (xsample,i and xneighbor,i, respectively):

xinterpolated,i = λxsample,i + (1− λ)xneighbor, i, λ ∼ β(α, α), α > 0 (2)

These steps are given in Algorithm 1, and depicted in Figure 2. NMER introduces minimal
computational overhead compared to standard experience replay, requiring only vectorized stan-
dardization, nearest neighbor querying, and local Mixup operations. This positions NMER as a
viable experience replay buffer for high-dimensional continuous control tasks.

Agent regularization via linear interpolation. Through the lens of Occam’s Razor (Rasmussen
and Ghahramani, 2001), NMER improves the generalizability of the policy and value function ap-
proximators of off-policy, MF-DRL agents by invoking the prior that linear combinations of state-
action pairs result in the same linear combinations of corresponding reward-next state pairs. This
prior improves generalizability in tasks where this linearity assumption approximately holds. Since
the spaces of an agent in continuous control tasks are continuous, interpolating continuous, linear
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Figure 2: With NMER, convex interpolation is performed between a sampled transition and its neighboring
transitions, improving the generalizability and robustness of off-policy, MF-DRL agents applied to continu-
ous control tasks.

Algorithm 1 Neighborhood Mixup Experience Replay (NMER)
Input: Replay buffer B, Mixup hyperparameter α > 0, Batch Size T
Output: Interpolated training batch Btrain

B = {(st, at, rt, s′t)}T
t=1

iid∼ U(B) // Sample Batch uniformly from Replay Buffer
Btrain ← Array[· · · ]
for t in T do

(ss, as, rs, s
′
s)← B[t] // Sampled Transition for NMER

[s̃s, ãs]
T ← ZScore([ss, as]T ) // Standardize States and Actions of Sampled Transition

Ks ← NN
(
[s̃s, ãs]

T ,B
)

// Standardized Local Neighborhood of Sampled Transition

(sn, an, rn, s
′
n) ∼ U(Ks) // Sample Neighboring Transition from Local Neighborhood

λ ∼ β(α, α) // Sample Mixup Coefficient
xs ← [ss, as, rs, s

′
s]
T // Sampled Transition Features

xn ← [sn, an, rn, s
′
n]

T // Neighboring Transition Features
xi = λxs + (1− λ)xn // Interpolate Sampled and Neighboring Transitions using Mixup
Btrain[t]← xi // Add Interpolated Sample to Training Batch

end for
return Btrain

combinations of transitions can still yield interpolated samples that lie proximate to the underlying
transition manifold T .

Furthermore, if the transition manifold T is convex, NMER guarantees on-manifold interpo-
lation, since this technique generates strictly convex combinations of transitions. In this regime,
synthetically-generated on-manifold transitions are indistinguishable from transitions generated at
the same point using the underlying environment dynamics. However, for many applications, par-
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ticularly high-dimensional, real-world continuous control tasks, the underlying transition manifold
will generally be non-convex.

Neighborhood Mixup as a heuristic to encourage on-manifold interpolation. Non-convexity
and nonlinearity in continuous control environments provide motivation for our neighborhood-based
interpolation mechanism, which addresses issues with non-convexity of the transition manifold by
only considering interpolation between transitions in the same “neighborhood”, i.e. transitions with
similar state-action pairs. If the transition manifold is locally Euclidean, linearly interpolating two
transitions is a suitable, approximately on-manifold mechanism for interpolating between spatially
proximal transitions.

5. Continuous control evaluation

To rigorously evaluate and quantify the improvement in sample efficiency with NMER, we compare
NMER to other state-of-the-art replay buffers by applying these replay buffers to continuous control
tasks and off-policy, MF-DRL algorithms.

Testing environment and configuration. We consider continuous control environments from
the OpenAI Gym MuJoCo (Brockman et al., 2016; Todorov et al., 2012) suite. Since we are prin-
cipally interested in evaluating the sample efficiency of replay buffers, we treat the off-policy, MF-
DRL algorithms used for these evaluations (SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al.,
2018)) as part of the experimental configuration. For each replay buffer variant, including NMER,
we train agents using replay or update-to-data ratios (ratio of gradient steps to environment interac-
tions) of 1, 5, and 20, and report the best results for each replay buffer variant. Additionally, for SAC
(Haarnoja et al., 2018), to stabilize the policy, we add a small L2 regularizer to the actor network for
all SAC evaluations. Implementation details and ablation studies for each replay buffer variant are
provided in the technical report. We measure replay buffer sample efficiency using the evaluation
reward of the reinforcement learning agent after 200K environment interactions have been sampled,
as in (Lin et al., 2020; Lee et al., 2020). Rewards are smoothed using an averaging window of 11,
as in (Achiam, 2018).

Baselines. We compare NMER to the following baselines: (i) Uniform, Vanilla Replay (U)
(Mnih et al., 2013; Engel et al., 2005), where transitions are sampled i.i.d. uniformly from the replay
buffer, (ii) Prioritized Experience Replay (PER) (Schaul et al., 2016) with stochastic prioritization,
(iii) Continuous Transition (CT) (Lin et al., 2020). Since the main comparison between NMER and
CT is how samples are selected for interpolation, we make two modifications to the original CT
baseline: (a) We remove the automatic Mixup α hyperparameter tuning mechanism, and (b) If a
terminal state is encountered in either the sample or neighbor transition, no interpolation occurs,
and the sampled transition is simply used for training the agent. In Continuous Transition, terminal
transitions in an episode can be interpolated with their previous, non-terminal transitions, resulting
in non-binary termination signals. In order to make the fairest comparison possible between NMER
and CT, we adopt the same interpolation rules we use for NMER in CT. (iv) SUNRISE Baselines.
Additionally, we compare the performance of NMER to SUNRISE baselines, tested using the same
continuous control environments and 200K environment interaction evaluation (Lee et al., 2020).
(v) Neighborhood Size Limits of NMER (1NN-Mixup and Mixup, respectively), which represent
the limits of NMER with one neighbor (k = 1) and all neighbors (k = |B|), respectively. (vi)
S4RL (S4RL), which implements the replay buffer interpolation technique from (Sinha et al., 2021).
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Lastly, (vii) Noisy Replay (N (0, σ2)), which trains DRL agents on transitions with i.i.d. Gaussian
noise added to each component.

Results for these evaluations are provided in Tables 1, 2, and 3. Note the following abbreviations
in Tables 1 and 3: (i) U = Uniform Replay, (ii) PER = Prioritized Experience Replay, (iii) CT =
Continuous Transition, (iv) NMER = Neighborhood Mixup Experience Replay, (v) 1-NN Mixup
= NMER with one neighbor, (vi) Mixup = NMER with all neighbors (Naive Mixup), (vii) S4RL
= S4RL, and (viii) N (0, σ2) = Noisy Replay. Best results for each off-policy algorithm (TD3,
SAC) are bolded. Detailed and additional results can be found in our technical report. Learning
curves for TD3 and SAC agents across all evaluated replay buffers are depicted in Figures 3 and 4
(SUNRISE and other baselines evaluated in (Lee et al., 2020) are depicted with dashed horizontal
lines indicating mean evaluation reward at 200K environment interactions). Each result is averaged
over four runs.

The results of this continuous control evaluation study indicate that NMER frequently achieves
comparatively better sample efficiency than the baseline replay buffers used in this study across
SAC and TD3, as well as other baseline DRL algorithms evaluated in (Lee et al., 2020).

Table 1: Continuous control results from OpenAI Gym MuJoCo, 200K env. interactions.

RL Agent Environment U PER CT NMER

TD3

Ant 2005 ± 399 2317 ± 756 2834 ± 875 4347 ± 908
HalfCheetah 6467 ± 658 6447 ± 693 8097 ± 358 9340 ± 1678
Hopper 3252 ± 157 3213 ± 511 3156 ± 351 3393 ± 220
Swimmer 131 ± 20 138 ± 8 134 ± 10 122 ± 10
Walker2d 2236 ± 686 1452 ± 1057 3087 ± 1058 4611 ± 441
Humanoid 388 ± 66 860 ± 385 2242 ± 2027 4930 ± 190
∆ NMER (%) -37.5% -36.8% -22.1% 0%

SAC

Ant 1188 ± 692 800 ± 160 1594 ± 717 2721 ± 1685
HalfCheetah 4918 ± 1928 6880 ± 886 6120 ± 525 8168 ± 1585
Hopper 1692 ± 1160 2801 ± 827 1115 ± 897 1875 ± 900
Swimmer 110 ± 29 121 ± 42 106 ± 46 140 ± 10
Walker2d 4303 ± 636 3466 ± 784 4696 ± 1194 4429 ± 819
∆ NMER (%) -26.0% -14.4% -25.1% 0%

Table 2: Baselines from SUNRISE (Lee et al., 2020) vs TD3 + NMER, 200K env. interactions.

Environment METRPO PETS POPLIN-A POPLIN-P SUNRISE NMER+TD3
Ant 282±18 1166±227 1148±438 2330±321 1627±293 4347±908
HalfCheetah 2284±900 2288±1019 1563±1137 4235±1133 5371±483 9340±1678
Hopper 1273±501 115±621 203±963 2055±614 2602±307 3393±220
Walker2d -1609±658 283±502 -105±250 597±479 1926±695 4611±441
∆ NMER (%) -82.8% -84.8% -87.7% -56.9% -46.7% 0%
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Table 3: Additional baseline comparison study with TD3, 200K env. interactions.

Environment 1NN-Mixup Mixup S4RL N (0, σ2) NMER
Ant 2651 ± 828 2361 ± 616 769 ± 270 1709 ± 350 4347 ± 908
HalfCheetah 7255 ± 1014 6743 ± 657 6032 ± 187 3733 ± 540 9340 ± 1678
Hopper 3360 ± 217 2917 ± 523 960 ± 151 1287 ± 593 3393 ± 220
Swimmer 111 ± 22 43 ± 5 44 ± 7 39 ± 1 122 ± 10
Walker2d 3372 ± 833 3340 ± 293 514 ± 169 516 ± 157 4611 ± 441
∆ NMER (%) -22.9% -36.0% -68.4% -67.9% 0%

Figure 3: Learning curves for TD3 agents trained on NMER and baselines. Each replay buffer is run with
four random seeds, and we plot mean performance with ±1σ intervals.

6. Discussion

These evaluation studies demonstrate that agents trained using NMER can learn robust policies us-
ing fewer environment interactions compared to agents trained using state-of-the-art replay buffers
for continuous control. We consider the implications of NMER and its extensions to DRL.

Limitations. Despite the observed empirical success, NMER exhibits several limitations. NMER
assumes the underlying transition dynamics are locally linear, which may be a naive approximation
for continuous control tasks with nonlinear underlying dynamics. Additionally, although NMER’s
use of nearest neighbors serves as a viable heuristic to steer the replay buffer toward on-manifold
interpolation, on-manifold interpolation is not analytically guaranteed. The sections below aim to
put these limitations into context by suggesting viable generalizations and considerations for future
work. Third, our experiments illustrate the limits of high replay (update-to-data) ratios, which could
be explained by overestimation bias of the value function(s) (Chen et al., 2020; Hiraoka et al., 2021).

Generalizing Synthetic Training. As NMER uses convex interpolation to generate transitions
for training, as more samples are added to the replay buffer, the interpolated transitions will become
more accurate. Furthermore, NMER can be extended to modulate the ratio of real to synthetic
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Figure 4: Learning curves for SAC agents trained on NMER and baselines. Each replay buffer is run with
four random seeds, and we plot mean performance with ±1σ intervals.

training samples over time, enabling a variety of flexible training schemes for different replay buffer
densities.

Generalizing neighborhoods. NMER computes nearest neighbors using standardized Euclidean
norms over concatenated state-action space, which allows for Mixup-based interpolation of transi-
tions with proximal state-action vectors, regardless of the rewards and next states in these transi-
tions. However, this notion of proximity between transitions can be generalized to any measure of
distance in the transition space of a replay buffer. Generalizing this notion of proximity between
stored environment interactions can be invoked via different distance metrics, e.g. Mahalanobis
distance, as well as the use of composite product norms over different features in the transition
space. For instance, the use of a composite product norm over states × actions results in nearest
neighbors having similar (state, action) pairs. The efficacy of different proximity representations
for neighborhood-based interpolated experience replay remains an open research question.

Generalizing interpolation. NMER also invokes the implicit prior that linear combinations of
states and actions result in the same linear combination of rewards and next states through the use
of Mixup. However, under some dynamics regimes and continuous control environments, local
linear interpolation via local Mixup may result in interpolated samples far from the underlying
transition manifold. For interpolating on-manifold samples in locally nonlinear neighborhoods,
off-policy DRL agents may benefit from the use of more sophisticated neighborhood-based interpo-
lation mechanisms, such as Gaussian Process Regression (Rasmussen, 2003; Rasmussen and Kuss,
2004) or Graph Neural Networks (Zhou et al., 2020).

7. Conclusion

We present Neighborhood Mixup Experience Replay (NMER), an experience replay buffer that im-
proves the sample efficiency of off-policy DRL agents through synthetic sample generation. We
empirically demonstrate that training agents on experiences generated via local Mixup in the tran-
sition space of a replay buffer facilitates learning robust policies using fewer environment interac-
tions. NMER combines the benefits of learning from locally linear approximations of the underlying
environment model with the sample efficiency benefits of learning from synthetic samples, thus ex-
panding the possibilities for tractable DRL in real-world continuous control settings.
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